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Abstract 

Clouds are a pervasive and unavoidable issue in satellite-borne optical imagery. Accurate, 

well-documented, and automated cloud detection algorithms are necessary to effectively leverage 

large collections of remotely sensed data. The Landsat project is uniquely suited for comparative 

validation of cloud assessment algorithms because the modular architecture of the Landsat 

ground system allows for quick evaluation of new code, and because Landsat has the most 

comprehensive manual truth masks of any current satellite data archive. Currently, the Landsat 

Level-1 Product Generation System (LPGS) uses separate algorithms for determining clouds, 

cirrus clouds, and snow and/or ice probability on a per-pixel basis. With more bands onboard the 

Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) satellite, and a greater 

number of cloud masking algorithms, the U.S. Geological Survey (USGS) is replacing the current 

cloud masking workflow with a more robust algorithm that is capable of working across multiple 

Landsat sensors with minimal modification. Because of the inherent error from stray light and 

intermittent data availability of TIRS, these algorithms need to operate both with and without 

thermal data. In this study, we created a workflow to evaluate cloud and cloud shadow masking 

algorithms using cloud validation masks manually derived from both Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) and Landsat 8 OLI/TIRS data. We created a new validation 

dataset consisting of 96 Landsat 8 scenes, representing different biomes and proportions of cloud 

cover. We evaluated algorithm performance by overall accuracy, omission error, and commission 

error for both cloud and cloud shadow. We found that CFMask, C code based on the Function of 

Mask (Fmask) algorithm, and its confidence bands have the best overall accuracy among the 

many algorithms tested using our validation data. The Artificial Thermal-Automated Cloud 

Cover Algorithm (AT-ACCA) is the most accurate nonthermal-based algorithm. We give 

preference to CFMask for operational cloud and cloud shadow detection, as it is derived from a 
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priori knowledge of physical phenomena and is operable without geographic restriction, making 

it useful for current and future land imaging missions without having to be retrained in a 

machine-learning environment. 

1  Introduction 

 Cloud cover is a pervasive, dynamic, and often unavoidable feature in space-borne 

remotely sensed optical imagery. Estimates show the mean annual global cloud cover over land 

surfaces is approximately 35% in the mid-latitudes (Ju and Roy, 2008) and between 58% 

(Rossow and Schiffer, 1999) and 66% (Zhang et al., 2004) over land surfaces worldwide. The 

effects of clouds in remotely sensed data are well documented in research pertaining to Landsat, 

an ongoing satellite remote sensing program operational since 1972 and designed to examine 

Earth’s terrestrial environment (Goward et al., 2001; Irons et al., 2012). Multiple approaches 

have been used in past studies to identify Landsat pixels contaminated by clouds and/or cloud 

shadows. Some approaches relied upon spectral tests and decision trees incorporating many or all 

of Landsat’s bands (e.g., Helmer et al., 2009; Hollingsworth et al., 1996; Irish, 2000; Irish et al., 

2006; Jin et al., 2013; Reeves et al., 2006; Roy et al., 2010; Scaramuzza et al., 2012; Vermote and 

Saleous, 2007; Vermote et al., 2016; Zhu and Woodcock, 2012). Temporally adjacent Landsat 

acquisitions can provide contrasting land cover information to help identify contaminated pixels 

that statistically deviate in certain wavelengths (Hagolle et al., 2010; Jin et al., 2013; Wang et al., 

1999; Yang et al., 2003), among or between tasseled-cap components (Hughes and Hayes, 2014; 

Kennedy et al., 2007; Kennedy et al., 2010), or from expected ground target conditions, such as 

water (Sheng et al., 2016) or forest (Helmer et al., 2009; Helmer et al., 2012; Huang et al., 2010). 

Statistical deviations cannot only create new masks, but can be used to find omitted cloud pixels 

from an incumbent cloud mask (Frantz et al., 2015; Selkowitz and Forester, 2015; Zhu and 
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Woodcock, 2014a, 2014b). Clouds have also been successfully identified through the 

harmonization of remote sensing datasets, such as imagery from the Moderate Resolution 

Spectroradiometer (MODIS) and Landsat (Oreopoulos et al., 2011; Roy et al., 2008). Artificial 

Neural Networks (ANN) have been trained to identify cloud or cloud-like objects by their texture 

(Lee et al., 1990) or multispectral reference data for clouds (Hughes and Hayes, 2014; 

Scaramuzza et al., 2012) and cloud shadows (Hughes and Hayes, 2014), though the resulting 

nodes of either technique do not necessarily have bearing to the physical qualities of clouds.  

 With so many different cloud detection algorithms available in the literature, it is 

extremely important to compare the performances of all those approaches and provide guidance 

on which algorithm to use for the remote sensing community interested in using Landsat data. 

The U.S. Geological Survey (USGS), which manages the ground stations and data processing 

operations for the Landsat mission (Irons et al., 2012), also needs to select the algorithm that 

works best across Landsat sensors and across different parts of the world.  

  Therefore, in this study we assessed the accuracy of multiple cloud masking algorithms to 

determine the best globally applicable algorithm to be used in future Landsat quality assurance 

data products. To accomplish this, we used 278 unique cloud validation masks to compare the 

accuracy and error of 13 cloud masking algorithms and 5 cloud shadow masking algorithms over 

the entire globe. We tested incumbent algorithms against newer experimental algorithms that 

have never before been validated. To utilize some of these algorithms, we first translated them 

from their scientific implementation to an open-source programming language that could be 

operated and maintained in a production environment. For validation masks, we used already 

existing cloud masks developed for Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and 

Landsat 8 Operational Land Imager (OLI) instruments. We then developed our own global, 

semi-random scene selection methodology, selected 96 Landsat 8 OLI/Thermal Infrared Sensor 
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(TIRS) scenes, stratified by both biome and cloud cover, and derived cloud and cloud shadow 

masks from each scene to use in this validation study.  

 

2  Existing Cloud Validation Masks 

 To perform algorithm validation, we derived our own unique cloud validation masks from 

Landsat 8 OLI/TIRS imagery and used two already existing masking datasets (Table 1; Fig. 1). 

The ―L7 Irish‖ validation scenes were originally selected by Irish et al. (2006), digitized by 

Scaramuzza et al. (2012), and consisted of 207 masks. In this study, we used only the 102 

―validation‖ masks, where the remaining masks are designated for algorithm training. These 

masks consist of cloud and thin cloud classes. All 207 of the ―L7 Irish‖ masks are currently 

provided online at no cost (USGS, 2016a).  

 The ―L8 SPARCS‖ dataset was developed to validate the Landsat 8 extension of Hughes 

and Hayes’ Spatial Procedures for Automated Removal of Cloud and Shadow (SPARCS) 

algorithm (Hughes and Hayes, 2014). Each of the 80 sub-scenes is a 3-km by 3-km subset (1,000 

x 1,000 30-m samples) of a Landsat 8 OLI image. Landsat 8 OLI images derived from 

Worldwide Reference System-2 (WRS-2) path/rows were selected randomly for each of the 14 

World Wildlife Fund terrestrial Major Habitat Types (MHT) that occur in each of the seven 

Biogeographical Realms (Olson et al., 2001). Since not every MHT occurs in each Realm, this 

process provided 64 locations. An additional 16 locations were then selected randomly from all 

terrestrial scenes. Individual images were selected from all available Landsat 8 OLI imagery 

acquired through the end of 2015 to provide a mix of cloud forms and vegetation phenology over 

the dataset. Pixels in each sub-scene were then hand-labeled (i.e., without using spectral 

thresholding or pre-classification) as cloud, cloud shadow, snow/ice, water, flooded, or clear-sky 
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by a single interpreter. For the validation used here, the snow/ice, water, and flooded classes were 

relabeled as clear-sky. Six sub-scenes were labeled by an independent interpreter with 96% 

agreement, implying that at least 4% of pixels in the dataset are ambiguous. The ―L8 SPARCS‖ 

dataset is currently provided online at no cost (USGS, 2016b).  

 

 

Table 1: Cloud validation masks and their respective characteristics. Cld. is cloud; Cld. sh. is 

cloud shadow; Fld. is flooded. 

Name # 

Scenes 

Cellsiz

e 

Grid 

dims. 

Sensor Files Cld. Cld. 

Sh. 

Thin 

cld. 

Sno

w-Ic

e 

Wate

r 

Fld

. 

L7 Irish (I) 102 30m Whol

e 

scene 

ETM+ 

(SLC 

on) 

Level-1 

product, 

metadata, 

validation 

mask 

YES som

e 

YES no no no 

L8 SPARCS 

(S) 

80 30m 1000x

1000 

pixels 

OLI Level-1 

product, QA 

band, 

validation 

mask, 

YES YES no YES YES YES 
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preview 

image, 

metadata 

L8 Biome (B) 96 30m Whol

e 

scene 

OLI Level-1 

product, 

metadata, 

validation 

mask 

YES som

e 

YES no no no 
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Figure 1: Global distribution of Landsat 8 Cloud Cover Assessment (CCA) (―L8 Biome‖) scenes, 

Landsat 8 Spatial Procedures for Automated Removal of Cloud and Shadow (SPARCS) subset 

tiles (shown here as the entire scene’s footprint), and Landsat 7 CCA (―L7 Irish‖) scenes. A total 

of 278 scene footprints are shown. 

3  New Validation Mask Creation 

3.1  Initial sample selection methods 

 Our sampling methodology was largely based upon the Landsat 7 ETM+ cloud cover 

assessment (CCA) methodology presented by Irish et al. (2006), which was originally developed 

to perform training and validation for the Automated CCA (ACCA) algorithm. While our study 

did not require a training dataset, as all of our tested algorithms already existed, we purposely 

digitized an even number of cloud masks so others could use half the dataset for training, and the 

other half for validation. In our dataset, clouds were not digitized for validation of any one 

particular CCA algorithm; instead, they were digitized with the categories of fill, clear, thin 

cloud, cloud, and cloud shadow. We digitized cloud shadows that were clearly identifiable 

throughout a scene; oftentimes, however, we passed up shadow digitization on scenes that had 

low illumination or high relief areas that subsequently cast many shadows.  

 To select our target scenes, we devised a unique method to randomly generate a list of 

globally representative Landsat scenes. Our idealized scenario was to have a random selection 

process (i.e., scenes picked by a random number generator) to minimize human-induced bias. 

This was not achievable due to several unavoidable flaws in the selection process. We initially 

tried a random sampling based upon latitudinal zones, used by Irish et al. (2006), which resulted 

in heavy clustering. To resolve this, we weighted each latitudinal zone by percent landmass. This 
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method reduced clustering, but ultimately was unusable due to the consistent overestimation of 

the Landsat Level-1 CCA score. Thus, we revised the methodology altogether, which is detailed 

below.  

 

  

  

Figure 2: Global distribution of the 96 unique Landsat 8 Cloud Cover Assessment (CCA) scenes, 

sorted by International Geosphere-Biosphere Programme (IGBP) biome. Twelve scenes were 

selected for each of the eight biomes. 

3.2  Semi-random sampling by biome 

 We eliminated the use of latitudinal zones and replaced them with biome-based 

stratification. By selecting scenes by biome, we reduced the heterogeneity of land cover types 
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within a given latitude zone, particularly in the mid-latitudes, and focused upon performance over 

certain land cover types, which may be of more interest to the greater scientific community than 

latitude-based criteria. We used biomes from the International Geosphere Biosphere Programme 

(IGBP; Loveland et al. (2000)). We selected this dataset based upon its unique inclusion of an 

Urban biome. The other classes within this dataset are Barren, Forest, Shrubland, 

Grass/Cropland, Snow/Ice, Wetlands, and Water. 

 We classified each land-based WRS-2 path/row by its percent composition within each 

biome. The path/row was then classified by plurality participation into a single biome; then 12 

scenes were randomly selected from each biome-filtered path/row list. Random path/row 

sampling still induced some undesirable clustering in several regions. We decided to sacrifice 

some of the random selection process in favor of creating a spatially heterogeneous dataset. We 

discarded approximately 25% of the original path/rows and randomly re-selected new ones, 

which reduced visibly apparent clustering. 

 From the final set of path/rows, we manually selected individual Landsat scenes based 

upon the approximate amount of clouds visible within each scene, while criteria such as 

seasonality were ignored to maintain simplicity. The scene selections were performed manually 

by an analyst due to the inaccurate Level-1 CCA score (also noted by Jones, 2015). We used the 

following approximate cloud cover bins: 

• Clear  (<35%)  

• Mid-cloud  (≥35% AND ≤65%)  

• Cloudy  (>65%)  

 The cloud cover bins were determined around the global cloud cover average over land 

quoted between 35% (Ju and Roy, 2008) and 66% (Zhang et al., 2004). Some data consumers 
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may find scenes >65% unusable for certain large-scale applications; however, we contend that 

being able to reductively find any noncloud-contaminated pixels may still be useful in 

smaller-scale applications, or could be later composited with other uncontaminated acquisitions.  

 We selected four scenes for each cloud cover bin and biome pair, bringing the total 

number of validation scenes to 96 (Fig. 2). 

 

3.3  Digitization process 

 To create the masks, we digitized the Landsat Level-1 multispectral data into thematic 

rasters. The following digitization steps were performed by a single analyst, as differences due to 

analyst interpretations in previous cloud masking studies resulted in an average error of about 7% 

(Scaramuzza et al., 2012). Scenes were digitized using Adobe® Photoshop® software, using a 

Wacom digitizer display to expedite the classification of cloud pixels. Band compositing was 

used to better contrast clouds from ground features. Individual bands were kept at their native 

16-bit resolution and composited to 48-bit (3-band) images. The typical band combinations used 

for digizitzing clouds are described in Table 2. Band 1 (coastal aerosol) was never used.  

 Clouds that were not immediately obvious were determined foremost by their adjacent 

shadow, otherwise by their shape and texture. Clouds generally appeared homogeneous in most 

Landsat bands, and were typically an irregular shape in relation to ground features. With these 

visual criteria, we used the following workflow when creating the cloud masks:  

1. Fill pixels around the scene edges were initially subtracted from the scene.  

2. Bands were composited to contrast cloud and noncloud features, based upon the conditions 

listed in Table 2.  
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3. A contrast stretch was applied until clouds could easily be differentiated from the 

underlying land and/or water. Clouds ideally appeared both bright and opaque relative to 

other features. Shadows were generally visible adjacent to clouds, but this was not always 

true with thinner or higher-altitude clouds. Shadows also varied based upon solar zenith 

angle and/or ambiguity of cloud shadows versus topographic shadows.  

4. Clouds were initially selected using the ―magic wand‖ tool, which selects adjacent pixels 

based upon a pre-defined homogeneity threshold. The selected clouds were then stored as 

their own layer and subtracted from the scene. Sometimes the ―select by color‖ tool was 

more appropriate and faster than the ―magic wand‖ tool.  

5. Brighter clouds were removed from the scene, giving thinner clouds greater contrast. The 

scene’s contrast was again stretched, and thin clouds were selected with the ―magic wand‖ 

tool. The selected thin clouds were stored in their own layer.  

6. The ―magic wand‖ tool often left gaps in the selection of thin clouds. This was solved by 

expanding all thin cloud edges by one pixel, then contracting them by one pixel, filling any 

gaps. Sometimes gap filling was skipped, as it was not always necessary.  

7. The scene was manually examined and false detections were removed. Generally, these 

were bright targets in areas such as urban landscapes, snow-covered mountains, and rivers.  

8. From the resulting cloud and thin cloud objects, cloud shadows were digitized if easily 

identified throughout the scene.  

Note that a quantitative threshold does not exist to distinguish thin cloud and transparent features 

such as haze or aerosols, making thin cloud identification inherently subjective to any analyst.  
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 An example of one of the scenes used and the accompanying digitized cloud mask is 

illustrated in Fig. 3. The ―L8 Biome‖ dataset is currently provided online at no cost (USGS, 

2016c).  

 

Table 2: Landsat 8 bands and band combinations used to digitize clouds and cloud shadows for 

the ―L8 Biome‖ dataset. Use of one band combination over another is ultimately subjective and 

dependent upon local scene conditions. 

Target Feature Local Conditions Band(s) Wavelength(s) 

Clouds Normal 5,3,2 (R,G,B) Near infrared,green,blue 

Clouds Snow cover 6,3,2 (R,G,B) Shortwave infrared 1,green,blue 

Clouds Foggy 6,5,3 (R,G,B) 

Shortwave infrared 1,near 

infrared,green 

Any 

(supplementary) 

High solar zenith; 

heavy cloud 

cover; ice sheets 

7; 9; 10; 11 

(Grayscale) 

Shortwave infrared 2; Cirrus; Thermal 1; 

Thermal 2 
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Figure 3: Left: Landsat 8 Operational Land Imager (OLI) scene used for cloud and cloud shadow 

mask digitization, acquired over WRS-2 Path 229, Row 57 on 21 May 2014, displayed as a false 

color composite (bands 6, 5, and 4, respectively). Right: The final ―L8 Biome‖ cloud mask 

product. 

4  Algorithms 

 All of our available algorithms were tested against the three unique cloud cover datasets 

(Table 1; Fig. 1). All of these algorithms were implemented in our processing infrastructure, and 

many have been documented in previous literature (Section 4.1-4.6). Here we give special 

attention to the CFMask algorithm, as it has not been previously documented, but is in use as a 

quality assurance band provided with higher level Landsat data products, such as surface 

reflectance. Before this study, a variety of cloud mask algorithms besides Fmask were considered 

to be a part of either standard Landsat Level-1 or higher level product development. An initial set 
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of algorithms were selected for evaluation based upon documentation in the literature and the 

ability to have sample cloud masks generated:  

• Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) cloud algorithm 

(Vermote and Saleous, 2007)  

• Function of Mask (Fmask) algorithm (Zhu and Woodcock, 2012)  

• Spectral Similarity Group (SSG) algorithm (Jin et al., 2013)  

• Histogram Fitting for Mapping (HFM) algorithm (Helmer et al., 2009, 2012)  

• Web Enabled Landsat Data (WELD) Cloud Cover Assessment (CCA) algorithm (Roy 

et al., 2010)  

• Landscape Fire and Resource Management Planning Tools (LANDFIRE) CCA (Reeves 

et al., 2006)  

• Landsat 7 Automated Cloud Cover Assessment (ACCA) (Irish, 2000; Irish et al., 2006).  

 The algorithms were evaluated based upon their readiness of implementation, which we 

defined as being characterized and at least partially validated, being automated (i.e., minimization 

of sliding parameters), and having documented accuracy assessment. LEDAPS CCA, 

LANDFIRE CCA, and Fmask fit the majority of those initial specifications. Fmask was 

ultimately selected because of its active development by the creator, adoption from the academic 

community, physically meaningful attributes, ongoing development to utilize the Landsat 8 OLI 

cirrus band, development to support Sentinel-2 bands (Zhu et al., 2015) and a reported high cloud 

accuracy of 96.41% (Zhu and Woodcock, 2012).  
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4.1  C implementation of Function of Mask (CFMask) 

The C programming language implementation of Function of Mask, known as CFMask, is 

a translation from Function of Mask, known as Fmask (Zhu and Woodcock, 2012; Zhu et al., 

2015). Fmask’s source code was translated to C at the USGS Earth Resources Observation and 

Science (EROS) Center for use in a production environment, though it was initially implemented 

to support the development of higher level Landsat data products.  

 

4.1.1  Translation of Fmask to C 

The original CFMask code was based upon Fmask version 3.2 and has since been 

modified and enhanced with guidance from both the original author and the scientific 

community. Fmask has since been upgraded to version 3.3 after enhancements were made to 

CFMask. Fmask was written in MATLAB and translated to C, ultimately improving algorithm 

efficiency and run time, which decreased by approximately 90%. To ensure consistency in the 

translation, we compared the similarity of Fmask and CFMask’s output using three test scenes of 

varying cloud cover and climate conditions (Path 16, Row 41 acquired August 19, 1990, and 

August 22, 1991; Path 10, Row 54 acquired March 12, 2011). Excluding fill pixels, the 

disagreeing pixels between the three Fmask and CFMask scenes is 0.44%, indicating that the 

translation was successful. To ensure CFMask’s accuracy and performance were comparable to 

other incumbent algorithms, it was tested against ACCA (used in Landsat Level-1 processing) 

and LEDAPS CCA (used in Landsat 4-7 surface reflectance processing) using manually derived 

truth masks; the results are shown in Table 3. In Zhu and Woodcock (2012) and Zhu et al. 

(2015), the accuracy assessments were made without any buffering of the cloud mask, while the 

CFMask results here used the default Fmask parameters that buffered clouds by three pixels in 
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eight connected directions, a process known as dilation. Therefore, the reported CFMask overall 

accuracy will be slightly lower; the overinclusion, or commission error, will be noticeably higher; 

the underinclusion, or omission error, will be lower than what is reported by Zhu and Woodcock 

(2012) and Zhu et al. (2015).  

 

Table 3: Results from the preliminary three-scene evaluation of the CFMask algorithm. 

Name % Correct % False % Omission % Commission 

ACCA 79.9 4.3 7.8 2.3 

LEDAPS CCA 85.7 14.3 5.81 28.97 

CFMask 90.97 9.03 4.98 16.02 

 

4.1.2  CFMask and CFMask cloud confidence bands 

 We designed CFMask to output two products: the high-confidence cloud bits that are 

dilated and presented in the final CFMask product (same as Fmask), and the cloud confidence 

bits derived from the cloud probability code. Cloud dilation fills any ―clear‖ pixels that are 

surrounded by clouds, reducing uncertainty concerning thin cloud or adjacent-to-cloud pixels. 

Dilation reduces ambiguity of a cloud-contaminated pixel at the cost of potentially high 

commission error; this is ideal for land use/land cover change assessments analyzing large 

spatiotemporal stacks of data, where cloud cover can adversely alter trending analysis. Cloud 

shadows are derived from the dilated cloud objects (Zhu and Woodcock, 2012). Because 
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shadows are derived from the high-confidence cloud pixels, there is no confidence score 

associated with cloud shadow.  

 The cloud confidence band does not use dilation; it provides a ―low,‖ ―medium,‖ and 

―high‖ confidence estimation of cloud contamination for every nonfill pixel. Low confidence is 

generated when the potential cloud score (a unitless value) less than 12.5; medium confidence is 

higher than 12.5, but less than 22.5; and high confidence is greater than 22.5 (Zhu, 2013). These 

confidence intervals are inserted into the algorithm at the potential cloud layer, which is 

described in Zhu and Woodcock (2012), Equation 18. 

 

4.1.3  CFMask with cirrus (CFMask T-Cirrus) 

CFMask has also been designed to run using the cirrus band to enhance the potential 

cloud layer and probability of cloud over land and water for Landsat 8 imagery, using thresholds 

described in Zhu et al. (2015), Equation 1. Here we implement the cirrus band to potentially 

reduce omission error. 

 

4.1.4  Nonthermal CFMask (CFMask NT) and nonthermal CFMask with cirrus (CFMask 

NT-Cirrus) 

 Nonthermal Fmask was designed to potentially support the European Space Agency 

(ESA) Sentinel-2, a platform without thermal detectors (Drusch et al., 2012), and to support 

potential failure of the TIRS instrument onboard Landsat 8. TIRS has known issues pertaining to 

the instrument’s onboard electronics controlling the scene select mechanism (SSM; USGS 

(2016d)), as well as issues with stray light. The stray light issues are more prevalent in TIRS 

band 11, preventing the accurate retrieval of land surface temperature through a split-window 
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atmospheric correction technique (Montanaro et al., 2014). The thermal band is necessary to 

accurately predict cloud location relative to clear pixel (surface) brightness temperature, and to 

estimate cloud height, which is essential to determining cloud shadow. 

 To test nonthermal CFMask’s accuracy, we made two different prototype CFMask 

processing flows and applied them to Landsat 8 data. The first prototype, CFMask NT, removed 

any thermal threshold tests from the original CFMask code. The second prototype, CFMask 

NT-Cirrus, used the first prototype, but replaced the cloud probability code over water and over 

land with cirrus cloud probability tests, exactly as described in Zhu et al. (2015).  

 

4.2  See5 

 The See5 CCA algorithm was developed from RuleQuest’s C5.0 machine-learning 

regression software package. Based upon a training dataset, See5 is designed to classify pixels 

and assign confidence levels based upon specific spectral characteristics. The See5 model 

contains 245 final branches in its decision tree and was trained with 7 dimensions in its dataset 

(Landsat 7 ETM+ bands 1 through 5, band 7, and solar elevation angle) (Scaramuzza et al., 

2012). In Landsat 8 Level-1 processing, See5 is always run and used to generate the cloud score.  

 

4.3  Automated Cloud Cover Assessment (ACCA) 

 The ACCA algorithm was originally designed by Hollingsworth et al. (1996) and serves 

as the Landsat TM and ETM+ cloud detection algorithm (Arvidson et al., 2006), which is used 

for providing a scene-wide cloud score that is used as searchable metadata for the archive (Irish, 

2000). ACCA identifies and refines cloud objects using several passes, which include a per-pixel 
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decision tree and statistical aggregation of the decision tree’s output to reduce ambiguity from the 

first pass.  

 Landsat’s OLI spectral bandpasses were refined from the Landsat TM/ETM+ design to 

enhance vegetation detection and largely reduce water vapor absorption (Irons et al., 2012), but 

did not contain thermal infrared bands. Therefore, the ACCA implementation was updated for 

Landsat 8 to detect clouds without thermal data (Scaramuzza et al. (2012); Sections 4.4 and 4.5). 

The algorithm implemented for Landsat 8 ACCA is an expansion of the first pass used in the 

Landsat TM and ETM+ ACCA (USGS, 2016e). ACCA is the default CCA in Landsats 4-7 

Level-1 processing, and is applied in Landsat 8 Level-1 production if thermal data are present, 

and is weighted against See5.  

 

4.4  Artificial Thermal-Automated Cloud Cover Algorithm (AT-ACCA) 

 The expansion of ACCA also included the creation of an algorithm to be run without 

thermal data. This is accomplished by creating an artificial thermal (AT) band, thus renaming the 

algorithm to AT-ACCA. The AT band was derived using a regression model and replaces the 

thermal band in every instance of ACCA’s first pass. In this study we used the ―Expanded 

AT-ACCA‖ algorithm, which utilizes a neural network designed in RuleQuest’s Cubist software 

to clean up ambiguous pixels. In Landsat 8 Level-1 processing, AT-ACCA is used when no 

thermal data are available. The validation assessment performed on the Expanded AT-ACCA 

routine, using the same ―L7 Irish‖ scenes as used here, placed it as 89.7% accurate (Scaramuzza 

et al., 2012).  
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4.5  Fixed Temperature-Automated Cloud Cover Algorithm (FT-ACCA) 

 Fixed Temperature (FT) ACCA uses an approximation of the global annual mean 

temperature (288 K) as the brightness temperature. FT-ACCA was designed to assess the effects 

of no thermal data in the ACCA algorithm and will never be considered for implementation in a 

production environment. Here we implement it to simply illustrate the performance impact of 

losing thermal data in ACCA. FT-ACCA’s previous validation assessment placed it at 68.7% 

accurate (Scaramuzza et al., 2012).  

 

4.6  Landsat 8 Surface Reflectance Code (LaSRC) Cloud Cover Algorithm (CCA) 

 The Landsat 8 Surface Reflectance Code (LaSRC) is a provisional surface reflectance 

retrieval algorithm that utilizes the improved radiometry, higher signal-to-noise ratio, and newer 

bands aboard Landsat 8, specifically the coastal aerosol and cirrus bands. A cloud masking 

algorithm was developed in LaSRC as a cursory check for clouds and cirrus clouds before 

surface reflectance is retrieved (Vermote et al., 2016). LaSRC uses the blue, red, cirrus, and TIRS 

1 bands to create a cloud mask. The TIRS 1 band is used to estimate cloud height and a potential 

cloud shadow, and the green, red and shortwave infrared bands use fixed thresholds to determine 

cloud shadow presence. Here we use results from LaSRC version 0.2.0.  
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5  Results 

5.1 All Validation Masks 

 Here we examine all three cloud masks – ―L7 Irish,‖ ―L8 SPARCS,‖ and ―L8 Biome‖ – to 

establish a baseline accuracy assessment using all avaiable cloud and cloud shadow validation 

data. An assessment of individual biomes using the ―L8 Biome‖ cloud and cloud shadow dataset 

is covered in Section 5.2. 

 

5.1.1  Accuracy assessment (clouds) 

 Each cloud masking algorithm was applied to the ―L8 Biome,‖ ―L8 SPARCS,‖ and ―L7 

Irish‖ datasets. Many algorithms tested here produce slightly different classifications, and have to 

be connected with the corresponding validation masks accordingly. CFMask does not assign bits 

that would qualify as being ambiguous (―Ambig‖), but the CFMask confidence band assigns 

―medium‖ confidence, which we considered ambiguous for ―thick‖ cloud, but correct for ―thin‖ 

clouds. Thin clouds can be correct for both ―high‖ and ―medium‖ confidence. ―Low‖ confidence 

is correct only if the pixel is cloud shadow or clear. The conditions for true, false, and ambiguous 

assignments are detailed in Table 4.  

Percent correct for cloud is calculated using Eqn. 1: 

 

          
                                                            

    
, (1) 
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where thick_as_thick, thin_as_thick, clear_as_clear, and shadow_as_shadow (where applicable) 

are the number of pixels correctly identified, and npix is the number of valid pixels in the scene. 

Omission error is calucated using Eqn. 2: 

           
                          

           
         

 

where cloud_as_cloud is the number of pixels correctly identified as cloud, and total_cloud is the 

total number of pixels correctly and incorrectly flagged as cloud. Commission error is calculated 

using Eqn. 3: 

 

             
                              

                        
         

 

where clear_as_cloud and shadow_as_cloud are the number of pixels incorrectly flagged as 

cloud, and total_clear and total_shadow are the total number of pixels correctly and incorrectly 

flagged as clear or shadow.  

 The results for all algorithms and validation masks are shown in Table 5. Overall, 

CFMask (89.3%) and the CFMask cloud confidence band (90.5%) were the most accurate. 

Predictably, the lack of dilation in the confidence band slightly raises the overall omission error 

(+0.9%) but drops the commission error (-2.0%). The addition of the cirrus band threshold to 

CFMask T-Cirrus reduced accuracy (-4.2%) and raised commission error (+11.1%), but also 

lowered omission error (-1.8%). The associated confidence bits for CFMask T-Cirrus recover 

some accuracy (+0.9%) and decreased commission (-1.9%) but increased omission (+6.4%) 

error. ACCA (83.8% overall) had a less strict ruleset, resulting in more ambiguity (+9.8%) than 
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the thermal-based CFMask algorithms. See5 (85.8% overall) was more conservative, as it tended 

to omit more cloud pixels (+14.8%) than ACCA or CFMask.  

 Of the nonthermal algorithms (AT-ACCA, CFMask NT series, CFMask NT-Cirrus series, 

FT-ACCA and See5), AT-ACCA had the best overall accuracy (87.5%) and lowest percent of 

ambiguous pixels (1.3%) of any nonthermal algorithm. AT-ACCA had a distinct advantage over 

the other listed algorithms, as it was trained to clean up ambiguous ACCA pixels without the use 

of the thermal band. When thermal was removed from CFMask, the omission error increased by 

as much as 38% over the original CFMask algorithm (+34.6% overall) and its confidence band 

(+41.0% overall). The CFMask NT algorithms’ overall performance improved with the 

implementation of the cirrus band, bringing CFMask up +4.8% (83.9% overall) and the CFMask 

confidence band up +5.2% (84.8% overall). Contrary to the results here, Zhu et al. (2015) found 

adding cirrus detection to nonthermal Fmask (simulated Sentinel-2 images) was more accurate 

than the thermal-based Fmask algorithm run over a similar Landsat 4-7 scene. However, they 

used a preliminary accuracy analysis with point-based classifications, while we use per-pixel 

masks covering entire scenes (or subset tiles in the case of ―L8 SPARCS‖.)  

 The overall least accurate algorithms are LaSRC CCA (73.1%) and FT-ACCA (74.2%). 

While FT-ACCA has a relatively low percentage of false pixels (5.8%), it has the highest 

percentage of ambiguous pixels (20.0%), indicating that a single thermal threshold value is not 

meaningful enough for the algorithm to decisively select a cloud versus noncloud pixel. LaSRC 

CCA has routinely high commission error (23.9%) and was the algorithm with the overall lowest 

accuracy.  
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Table 4: Criteria used in CCA validation masks against the output from the CCA algorithms to 

classify cloud pixels as correct, false, or ambiguous (―Ambig‖). Note that ―medium‖ confidence 

denotes a thin or ambigous cloud, and not all algorithms determine ambiguity. 

Manual mask Algorithm Correct if: Algorithm False if: 

Algorithm Ambig 

if: 

Thick Thick Clear or Shadow 

Ambig or 

Medium 

Thin Thick or Ambig or Medium Clear or Shadow - 

Clear Clear or Shadow Thick 

Ambig or 

Medium 

Shadow Clear or Shadow Thick 

Ambig or 

Medium 

 

Table 5: Results of tested cloud algorithms and the respective masks used to perform each test, 

where ―I‖ is ―L7 Irish,‖ ―S‖ is ―L8 SPARCS,‖ and ―B‖ is ―L8 Biome.‖ Note that CFMask 

NT-Cirrus series, CFMask T-Cirrus series, and LaSRC CCA algorithms could not be run with the 

―L7 Irish‖ dataset, as they are Landsat ETM+ derived, therefore lacking the cirrus band. 

Name Masks used % Correct  % False % Ambig. % Omission % Commission 

ACCA I,S,B 83.83 6.39 9.78 6.66 5.85 

AT-ACCA I,S,B 87.52 11.21 1.27 12.42 9.83 

CFMask I,S,B 89.29 10.71 0.00 2.72 12.02 
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CFMask cloud conf. I,S,B 90.45 8.16 1.38 3.65 10.06 

CFMask T-Cirrus S,B 85.14 14.86 0.00 0.94 23.05 

CFMask T-Cirrus conf. S,B 86.05 12.42 1.53 7.35 21.19 

CFMask NT I,S,B 79.15 20.85 0.00 34.56 8.38 

CFMask NT cloud conf. I,S,B 79.60 14.70 5.69 41.02 8.07 

CFMask NT-Cirrus S,B 83.90 16.10 0.00 5.41 22.67 

CFMask NT-Cirrus conf. S,B 84.81 12.08 3.11 12.48 20.92 

FT-ACCA I,S,B 74.20 5.84 19.96 8.07 3.75 

LaSRC CCA S,B 73.07 19.03 7.91 4.70 23.90 

See5 I,S,B 85.79 11.72 2.50 14.83 5.71 

 

5.1.2 Accuracy assessment (cloud shadows) 

Not all algorithms used for the above CCA tests are capable of detecting cloud shadow. Only five 

algorithms were compared with the validation masks, and the results are reported in Table 6. 

Percent correct for cloud shadow is calculated using Eqn. 4: 

 

          

 
                                                                                                         

    
 

 (4)  
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where shadow_as_shadow is the number of pixels correctly identified as shadow; total_thick, 

total_thin, and total_clear are the total number of pixels correctly and incorrectly flagged as 

thick/thin cloud or clear; thick_as_shadow, thin_as_shadow, and clear_as_shadow are the 

number of pixels incorrectly flagged as shadow; and npix is the number of valid pixels in the 

scene. Omission error is calculated using Eqn. 5: 

 

           
                             

            
         

 

where total_shadow is the total number of pixels correctly and incorrectly flagged as shadow. 

Commission error is calculated using Eqn. 6: 

 

             
                                              

                                  
         

 

All tested algorithms have a high success rate of detecting cloud shadows (between 93-96%) 

relative to their cloud detection accuracy. While commission rates are low (between 1-4%), 

omission rates are higher (between 13-26%), notably when cirrus cloud test(s) are implemented 

and/or when thermal test(s) are removed. Some accuracy issues can be attributed to cloud 

accuracy, as all tested algorithms estimate cloud shadow position partially using the cloud 

objects. Similar to the cloud assessment results, LaSRC CCA performed the worst in terms of 

accuracy and error among all tested algorithms, while performance was similar among 

CFMask-based algorithms, though tests lacking the thermal band performed worse than those 

including the thermal band.  
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Table 6: Results of tested cloud shadow algorithms and the respective masks used to perform 

each test.  

 

Name 

Masks 

used 

Total 

Correct % False % Omission 

% 

Commission 

CFMask I,S,B 96.17 3.83 13.39 1.32 

CFMask NT I,S,B 96.12 3.88 19.66 3.16 

CFMask NT-Cirrus S,B 95.58 4.42 21.74 3.31 

CFMask T-Cirrus S,B 96.04 3.96 19.20 2.94 

LaSRC S,B 93.85 6.15 26.06 4.77 

5.2 “L8 Biome” Masks 

5.2.1  Dataset creation 

The ―L8 Biome‖ dataset exhibited very little qualitative clustering (Fig. 2). Unlike the 

―L7 Irish‖ dataset, the ―L8 Biome‖ dataset did not have extensive clustering in the Austral 

regions (i.e., Chile and New Zealand), but did not have the uniform stratification of the ―L8 

SPARCS‖ dataset (Fig. 1). There was some visible spatial clustering in the Wetlands biome, 

specifically in northeastern Siberia. Globally, many wetlands are not as comparable in size as in 

this region, making clustering more likely to occur.  
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5.2.2  Scene selection  

The design of the ―L8 Biome‖ CCA scene selection process allowed for an alternate view 

of the accuracy and strengths of each cloud masking algorithm in terms of the path/row’s primary 

biome and each scene’s overall cloud cover. We only assigned one biome per scene, though there 

were nearly always two or more biomes in a scene. Thus, our curated dataset ignores potential 

influence from secondary and/or tertiary biomes. One example of this issue was with the cluster 

of Wetlands in Siberia (Fig. 2), as this area can be completely snow and/or ice covered during 

winter seasons, causing this biome to be potentially misrepresented in this dataset. Likewise, our 

Water biome scenes exist adjacent to all other biomes, so a mixture of scenes are represented 

within our sample Water scenes, such as Barren and Snow/Ice in Greenland, Urban and Forest in 

Brazil, and Barren in Somalia. Similarly, the Urban biome is never a majority component within 

a path/row, so Urban scenes include a mix of biomes surrounding the urban area. 

5.2.3  Accuracy assessment (clouds) 

 Due to the relatively poor performance of the CFMask NT series, LaSRC CCA, and 

FT-ACCA (Table 5), they were excluded from the biome-based analysis. Accuracy of the 

remaining algorithms was evaluated by both individual biome and individual cloud bin (Table 7). 

Clouds were often confused with Snow/Ice, but See5 did so less frequently. A reduction in 

See5’s Snow/Ice commission came with a reduction of accuracy over heavily cloud-covered 

scenes and/or heavily vegetated regions, but performed the best over clear scenes. CFMask and 

its confidence band performed similarly across all biomes and cloud cover bins, but the 

confidence band was more accurate than the CFMask band in every biome except Barren. The 

CFMask NT-Cirrus conf. outperformed CFMask NT-Cirrus in every biome except Shrubland. 
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CFMask T-Cirrus and CFMask T-Cirrus conf. outperformed the nonthermal CFMask NT-Cirrus 

and CFMask NT-Cirrus conf. in every biome except Shrubland, Snow/Ice, and Urban. The 

CFMask T-Cirrus algorithms outperformed all other algorithms over ―Cloudy‖ scenes by at least 

3%. Thermal-based CFMask outperformed ACCA (the incumbent Level-1 algorithm) in every 

scenario except Water biomes and sometimes Snow/Ice. See5 was routinely less accurate than 

thermal-based CFMask in every biome, except Wetlands and Snow/Ice. Most cloud algorithms’ 

errors increased as the number of clouds increased within the scene. Where some algorithms 

appear to have high overall correctness, some often flagged pixels as ambiguous; this initially 

appeared to increase accuracy, but in practice reduced the number of correctly identified cloud 

pixels. Ambiguity remained high with the more overall inaccurate algorithms, ACCA and 

CFMask NT-Cirrus, where an average of 5-10% of pixels were flagged as ambiguous.  

 Errors of omission and commission are also shown in terms of biome and cloud bin 

(Table 8). Overall, commission was the greatest issue in Snow/Ice regions, where spectral 

signatures of clouds in the visible bands were similar to Snow/Ice. In the Snow/Ice biome, See5 

was conservative, but also inaccurate. By cloud bin, the greater the amount of clouds in the scene, 

the greater the chance an algorithm has to make commission errors.  

 

Table 7: Percent correct, percent ambiguous, omission error and commission error cloud pixels, 

sorted by both biome and cloud cover type.  

Name   Barren Forest 
Grass/

Crops 

Shrub

land 

Snow/

Ice 

Urba

n 

Wate

r 

Wetla

nds 
Clear 

MidCl

ouds 
Cloudy 

ACCA % 86 87.48 83.05 86.6 67.93 86.61 92.23 86.34 84.03 86.45 82.88 
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Correct 

% 

Ambig. 
13.38 12.27 9.26 19.33 1.56 12.78 8.8 14.16 9.37 7.49 17.47 

% 

Omissio

n 

2.06 6.2 9.13 2.13 0.68 3.82 1.33 0.76 4.01 1.17 4.62 

% 

Commis

sion 

7.54 0.32 2.66 4.67 29.44 1.68 10.67 8.94 7.18 4.26 13.29 

AT-ACCA 

% 

Correct 
88.94 89.68 89.23 92.48 68.3 93.4 95.05 93.83 90.63 87.1 88.59 

% 

Ambig. 
2.2 0.72 0.68 1.83 0.35 0.87 1.03 1.32 0.52 1.06 1.79 

% 

Omissio

n 

8.07 8.65 10.7 4.36 1.55 11.49 3.23 1.69 10.25 3.13 5.27 

% 

Commis

sion 

12 6.48 3.76 15.64 30.54 6.98 20.28 14.57 8.25 9.21 23.88 

cfmask 

% 

Correct 
92.39 93.83 94.07 87.3 64.09 92.05 86.36 92.38 92.91 86.79 85.74 

% 0 0 0 0 0 0 0 0 0 0 0 
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Ambig. 

% 

Omissio

n 

0.57 1.07 1.97 3.27 13.41 3.39 8.39 0.09 6.66 0.22 4.42 

% 

Commis

sion 

14.72 25.49 6.36 8.5 24.31 13.94 26.99 26.32 5.98 20.21 28.99 

cfmask_co

nf 

% 

Correct 
84.62 96.29 94.51 87.19 68.23 93.95 88.05 93.68 93.77 86.84 88.69 

% 

Ambig. 
1.14 1.99 1.34 1.62 6.67 1.36 2.55 1.4 1.11 2.12 3.29 

% 

Omissio

n 

1.15 3.39 4.48 4.87 14.35 6.17 9.8 0.35 10.8 0.69 4.71 

% 

Commis

sion 

15.55 24.19 5.1 8.4 26.46 9.88 24.59 24.48 5.18 15.71 31.03 

cfmask_nt_

cirrus 

% 

Correct 
76.64 88.21 89.71 91.38 48.42 92.8 91.17 81.15 82.89 87.14 81.1 

% 

Ambig. 
0 0 0 0 0 0 0 0 0 0 0 

% 5.95 1.78 10.37 2.07 0.76 4.06 5.19 9.58 3.18 5.6 6.3 
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Omissio

n 

% 

Commis

sion 

16.46 29.23 8.63 17.73 63.53 14.37 35.75 24.41 17.33 27.29 33.22 

cfmask_nt_

cirrus_conf 

% 

Correct 
84.39 90.84 89.26 92.61 50.56 94.87 93.39 82.38 84.01 86.94 83.37 

% 

Ambig. 
5.03 5 3.66 3.44 3.48 2.46 2.05 9.67 2.86 5.09 5.08 

% 

Omissio

n 

7.9 21.04 17.13 4.55 25.06 10 8.19 10.72 10.72 15.14 13.36 

% 

Commis

sion 

17.02 26.01 8.46 18.24 65.7 9.21 34.11 26.85 16.73 22.58 37.79 

cfmask_t_c

irrus 

% 

Correct 
90.84 92.08 90.28 88.22 45.07 91.39 92.46 86.83 85.04 90.12 80.18 

% 

Ambig. 
0 0 0 0 0 0 0 0 0 0 0 

% 

Omissio

n 

0.23 1.98 0.72 2.44 5.7 3.63 1.85 0.06 15.3 32.3 32.6 
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% 

Commis

sion 

20.79 25.32 11.58 13.03 63.47 15.34 33.4 33.5 15.3 32.3 32.6 

cfmask_t_c

irrus_conf 

% 

Correct 
91.22 93.51 90.74 89.56 43.58 93.4 94.37 87.66 85.35 90.02 82.58 

% 

Ambig. 
0.83 3.24 0.99 1.9 3.77 1.2 1.64 3.3 2.11 1.86 2.3 

% 

Omissio

n 

0.47 22.21 1.78 3.28 25.09 6.32 3.46 0.21 10.86 6.96 5.12 

% 

Commis

sion 

20.55 24.07 10.21 12.04 67.48 11.16 32.03 32.01 14.9 27.18 35.51 

See5 

% 

Correct 
78.75 78.69 73 81.63 82.19 83.91 81.14 89.93 94.68 66.95 84.96 

% 

Ambig. 
1.57 4.44 2.77 3.27 5.12 4.01 2.62 3.2 2.4 3.31 4.41 

% 

Omissio

n 

13.21 18.74 27.37 24.44 32.13 15.99 17.28 8.07 15.42 13.55 30 

% 

Commis
9.78 3.63 0.71 11.46 9.46 6.51 21.89 10.49 1.95 8.07 17.69 
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sion 

 

 

5.2.4  Accuracy assessment (cloud shadows) 

 As in Section 5.2.3, the cloud shadow results are analyzed by error in both biome and 

cloud bin categories (Table 8). Unlike in the cloud results, LaSRC was compared for cloud 

shadow due to the low number of algorithms to detect cloud shadow. Ambiguous was not an 

applicable category, as CFMask does not contain the ability to assign confidence to cloud 

shadow. Cloud shadow accuracy often correlated with cloud accuracy (―% Correct‖); however, 

the addition of the cirrus test to both thermal and nonthermal-based CFMask variants decreased 

overall cloud shadow accuracy in Snow/Ice and was within about 1.5% of Urban. However, the 

cirrus tests improved cloud shadow accuracy over CFMask NT in all other biomes. Scenes with 

―MidCloud‖ cover were typically the least accurate, as these conditions warrant the most cloud 

shadows. Omission error exceeded commission error in every biome and cloud cover type, never 

exceeding 6% error. Omission error was typically greatest in CFMask NT, likely due to missing 

thermal data to provide accurate cloud heights, and general inaccuracy of the cloud objects used 

to draw the potential shadow’s footprint.  

 

Table 8: Percent correct, omission error, and commission error of cloud shadow pixels, sorted by 

both biome and cloud cover type. 

Name   Barren Fores Grass/ Shrub Snow Urba Wate Wetla Clear MidCl Cloudy 
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t Crops land /Ice n r nds ouds 

cfmask_

nt 

% 

Correct 97.41 93.99 97.57 95.44 94.54 95.99 95.82 96.73 97.66 97.39 92.85 

% 

Omissi

on 14.81 25.42 49.74 20.23 39.42 16.22 19.19 11.38 37.59 10.30 24.86 

% 

Commi

ssion 

1.7 4.21 0.9 4.14 2.04 3.51 3.8 2.97 1.3 2.17 5.26 

cfmask_

t_cirrus 

% 

Correct 96.79 94.04 97.51 95.56 94.29 97.08 96.52 96.86 97.61 97.01 93.71 

% 

Omissi

on 10.41 24.88 30.17 11.01 38.11 14.35 15.66 4.95 27.52 7.21 20.39 

% 

Commi

ssion 

2.5 4.07 1.57 4.25 2.24 2.56 3.17 3 1.52 2.65 4.6 

LaSRC 

% 

Correct 95.83 91.83 90.74 97.76 90.00 96.69 93.93 97.30 94.32 94.09 94.56 

% 

Omissi

on 18.12 34.96 46.94 17.23 38.37 16.27 21.21 7.42 37.55 11.47 25.04 
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% 

Commi

ssion 

1.79 5.04 7.05 1.9 9.13 2.81 5.51 2.17 4.28 4.89 3.95 

cfmask 

% 

Correct 96.48 94.67 97.41 95.54 96.29 97.01 96.63 97.30 98.19 97.26 93.96 

% 

Omissi

on 10.97 27.10 31.28 8.73 35.99 14.22 15.50 4.86 28.46 7.77 18.04 

% 

Commi

ssion 

2.78 3.31 1.68 4.42 1.96 2.62 3.06 2.57 0.95 2.39 5.02 

cfmask_

nt_cirru

s 

% 

Correct 95.44 93.83 96.76 95.39 94.59 96.74 96.24 96.04 97.33 97.10 92.53 

% 

Omissi

on 10.00 25.50 38.62 11.96 37.66 15.47 19.06 10.56 29.90 9.00 23.53 

% 

Commi

ssion 

3.9 4.32 1.93 4.39 1.96 2.77 3.39 3.69 1.75 2.53 5.61 
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6  Discussion 

6.1 Algorithm Suitability 

As illustrated in the results, some cloud and cloud shadow algorithms have strengths or 

weaknesses in each biome and cloud cover type. To simplify the results, we use a formula to 

derive a metric to estimate algorithm-environment suitability: 

 

                                                    

 

Here we apply Eqn. 7 to the results derived from our tested cloud algorithms applied to 

our ―L8 Biome‖ validation masks. The same is applied to the cloud shadow results, except with 

the ―% Ambiguous‖ term removed, as our tested shadow algorithms only produce a positive or 

negative result: 

 

                                        

 

The results strongly favor the CFMask heritage algorithms, though detecting cloud pixels  

without thermal data is best with AT-ACCA, and areas of high commission for thermal-based 

CFMask algorithms (Snow/Ice and Water) are better performed by ACCA (Table 9). In almost 

every instance of CFMask being used in nonthermal applications, the addition of the cirrus band 

nearly always produces the best results, except over Forest and Wetlands. For cloud shadows, the 

CFMask algorithms unanimously performed the best. 
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Table 9: The most suitable cloud (top) and cloud shadow (bottom) algorithm for the listed biome 

or cloud cover. Suitability was determined using data from Tables 7 and 8 applied to Eqns. 1-3 

for cloud (top) and Eqns. 4-6 for cloud shadow (bottom.) C = Cirrus; c = confidence; T = 

thermal; NT = nonthermal. 

 

Barren Forest 

Grass/ 

Crops 

Shrub 

land Snow/Ice Urban Water Wetlands Clear 

Mid 

Clouds Cloudy 

Best Overall Cloud 

Algorithm CFMask AT-ACCA CFMask CFMask ACCA 

CFMask 

c ACCA AT-ACCA CFMask 

CFMask 

NT-Cc 

CFMask 

NT-Cc 

Best Thermal 
CFMask ACCA CFMask CFMask ACCA 

CFMask 

c ACCA See5 CFMask 

CFMask 

c 

CFMask 

NT-Cc 

Best Non-Thermal 
AT-ACCA AT-ACCA AT-ACCA 

CFMask 

NT-C AT-ACCA 

CFMask 

NT-C AT-ACCA AT-ACCA AT-ACCA 

CFMask 

NT-Cc 

CFMask 

NT-C 

Best Overall Cloud 

Shadow 

Algorithm 

CFMask 

T-C 

CFMask 

T-C 

CFMask 

T-C CFMask CFMask CFMask CFMask CFMask CFMask CFMask 

CFMask 

T-C 

Best Thermal 

CFMask 

T-C 

CFMask 

T-C 

CFMask 

T-C CFMask CFMask CFMask CFMask CFMask CFMask CFMask 

CFMask 

T-C 

Best Non Thermal 

CFMask 

NT-C 

CFMask 

NT 

CFMask 

NT-C 

CFMask 

NT-C 

CFMask 

NT-C 

CFMask 

NT-C 

CFMask 

NT-C 

CFMask 

NT 

CFMask 

NT-C 

CFMask 

NT-C 

CFMask 

NT-C 

 

6.2  Challenges and Future Development 

6.2.1  Known issues 

The USGS implementation of CFMask has been provided as one of the quality assurance 

bands included with the provisional Landsat surface reflectance products, and science users have 
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acknowledged several weaknesses of the algorithm. CFMask has higher cloud commission rates 

over active fires because smoke resembles the shape and spectral response of thin clouds, but 

bears a different thermal signal, making it more difficult to differentiate from land. Smoke is also 

not generally imageable in the shortwave infrared bands (e.g., Schroeder et al., 2015), which 

many of our tested cloud algorithms use in one or more spectral tests. Sun glint on water bodies 

at lower latitudes, foam along coastlines, terrain shadow and snow and/or ice are other features 

that frequently contribute to commission error. Ultimately, region-based algorithm modifications 

may be necessary to circumvent some of these issues.  

Initial identification of ground targets known for high commission error for both cloud 

and cloud shadow, such as water, could be peformed and then cleaned up within a certain 

distance of the feature (Hughes and Hayes, 2014). Terrain shadow cleanup can also be 

accomplished using a digital elevation model (DEM) and solar elevation information (e.g., Jin et 

al., 2013). For Snow/Ice commission, additional tests could include an increase in the 

Normalized Difference Snow Index (NDSI) threshold (Hall et al., 1998), verification of cloud 

objects with corresponding cloud shadows (Choi and Bindschadler, 2004; Jin et al., 2013), or 

temporal composites of summer season pixels and a decision tree to remove incorrectly flagged 

cloud (Selkowitz and Forester, 2015) and/or cloud shadow pixels.  

Multiple acquisitions, possibly from one or more satellites, could potentially be used to 

verify cloud and cloud shadow masking; however, this method is vulnerable to interference from 

phenomena such as weather, seasonality, natural disaster, anthropomorphic modification, and/or 

pixels marked incorrectly as ―clear‖ in the composite or ―truth‖ scene. This compositing scheme 

would ideally have to perform with and without thermal data and be functional across all biomes, 

solar angles and altitude conditions to be deemed a sufficient companion to CFMask. 
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Furthermore, an operational, archive-wide application of such a compositing algorithm would be 

computationally expensive relative to the per-scene cloud detection routines already in place. A 

data cube environment where Landsat scenes are dissolved into a single, continuous grid (e.g., 

Lewis et al., 2016) would be more suitable for such an application. 

6.2.2  Cirrus band implementation 

The cirrus band is a viable solution to operating a cloud and cloud shadow masking 

algorithm without the availability of thermal bands; however, it does not solve for omission of 

low altitude clouds, which subsequently contribute to cloud shadow omission. While we 

overcame the initial implementation hurdles, several caveats of the Landsat 8 OLI cirrus band 

must be acknowledged. The cirrus band’s onboard signal-to-noise ratio (SNR), calculated using 

typical spectral radiance levels for the cirrus band’s center wavelength (1373 nm), has the highest 

coherent noise of any Landsat 8 OLI band (160), which is influenced by crosstalk from the 

shortwave infrared 1 band (Morfitt et al., 2015). However, the cirrus band’s SNR remained stable 

during the span of the Morfitt et al. (2015) study – from Landsat 8’s launch in February 2013 to 

2015. The cirrus band is the most reliable method for mitigating any issues with Landsat 8 TIRS 

and cloud masking algorithms (e.g., Zhu et al., 2015); futhermore, it is necessary for cloud 

masking algorithms for the ESA’s Sentinel-2 MultiSpectral Instrument (MSI), as both 

Sentinel-2a and Sentinel-2b lack thermal detectors (Drusch et al., 2012). In our implementation, 

the cirrus data helped increase the accuracy where thermal was excluded from the algorithm. 

However, when thermal and cirrus are used simultaneously, the accuracy decreased about 4-5% 

from the cirrus band, introducing commission error, particularly over the Snow/Ice biome. Any 

implementation of the cirrus band for cloud shadow only increased commission and omission 

error.  
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6.2.3  Trained algorithm development 

 The masks derived in this study were designed for potential use in training a neural 

network to detect clouds. There is always potential to overfit training data, in this case to a 

specific cloud type, shape, or underlying biome conditions. One solution to overfitting could be 

to ―regularize‖ the training dataset by intentionally inserting noise (Bishop, 1995). We observed 

marginally improved accuracy of AT-ACCA when used on Landsat 8 OLI-based cloud masks 

(―L8 SPARCS‖ at 89.8%; ―L8 Biome‖ at 88.8%) over the Landsat 7 ETM+ cloud masks (―L7 

Irish at 86.4%), as the AT routine was originally trained with part of the ―L7 Irish‖ dataset 

(Scaramuzza et al., 2012). The approximately 8-16 times lower SNR of the Landsat 7 ETM+ 

bands (Morfitt et al., 2015) is likely sufficent enough to regularize the AT-ACCA for use on 

Landsat 8 OLI data. Therefore, this methodology should be considered for future datasets whose 

target dataset contains greater noise than the training dataset; Bishop (1995) outlines how to 

systematically introduce noise into a dataset to prevent overfitting. 

 Although AT-ACCA was relatively accurate both here and in Scaramuzza et al. (2012), 

the future applicability of an algorithm trained with machine-learning is rather limited: if 

bandwidths are sharpened and bands are added and/or removed from future instrument suites, a 

new series of training and validation masks must be derived to train and validate the new 

algorithm. This inevitably introduces more uncertainty and subjectivity to the final product. This 

may also be true for algorithms designed with inherent knowledge and/or physical characteristics, 

such as CFMask, which require some degree of biased information. However, the ability to alter 

an algorithm on a test-by-test basis using a priori knowledge of a cloud or cloud shadow may be 

more desirable to maintain an already accurate algorithm for multiple sensors. This would be 
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accomplished by altering the tests with knowledge of the spectral response relative to the bands 

in the sensor, allowing the algorithm to perform similarly to its heritage algorithm, thus 

maintaining consistency between past, current, and future quality assurance information for all 

Landsat data products. Here, replacing AT-ACCA with its next best performing algorithm, 

CFMask NT Cirrus conf., comes at a trade-off in overall accuracy (-2.7%) and more so in 

Snow/Ice and Water biomes.  

 

7  Conclusion 

 In this study, we used pre-existing cloud validation masks derived from Landsat 7 ETM+ 

(―L7 Irish‖) and Landsat 8 OLI data (―L8 SPARCS‖), and combined them with our own newly 

derived Landsat 8 OLI masks (―L8 Biome‖) to validate 13 cloud (Tables 5 and 7) and 5 cloud 

shadow (Tables 6 and 8) masking algorithms, using a total of 278 validation masks (Table 1; Fig. 

1). We ultimately selected our new validation scenes by biome classification, and manually 

digitized them to represent cloud, thin cloud, clear, and some cloud shadow classes. Together, 

these datasets represent the most comprehensive cloud assessment truth masks available for any 

satellite data archive. 

 We validated algorithms that already existed in both experimental and operational 

environments (Section 4), though we chose to implement Fmask (Zhu and Woodcock, 2012) in 

an operational environment, where we renamed it CFMask and created variants of it to produce 

cloud confidence bits, incorporate a cirrus test, remove the thermal tests from the algorithm, and 

add cirrus band tests to recover some accuracy from the lack of thermal data (Table 5). 

Our validation results found CFMask’s confidence band was the overall most accurate among 

the thermally based algorithms; AT-ACCA was the overall most accurate nonthermal-based 
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algorithm (Table 5). The addition of a cirrus band threshold to CFMask decreased accuracy but 

also decreased omission error. When a cirrus test was applied to the confidence band (CFMask 

T-Cirrus conf.), it decreased overall accuracy and introduced more omission and commission 

error. However, the cirrus band recovers cloud accuracy when thermal data are not present. Using 

the ―L8 Biome‖ data, we determined most cloud algorithms have high commission error over 

Snow/Ice and sometimes Water biomes. Many algorithms that expressed low errors of omission 

and commission often produced ambiguous results. Cloud shadow results are relatively similar, 

but CFMask shows the best overall performance (Table 7). All cloud shadow algorithms yield 

low commission but high omission error, which is partially dictated by the cloud object from 

which the shadows are projected. For certain biome or cloud cover types, CFMask-heritage 

algorithms were not always the best option; we derived a simple metric to provide the most 

suitable algorithm for each pairing (Table 9). 

 While some shortcomings of an algorithm may be improved by iteratively refining one or 

more of its spectral tests, maintaining a global, unbiased scope of each algorithm is one of the 

key components of the USGS’s mission to provide quality assurance information for Landsat 

data products. The known issues of the TIRS instrument aboard Landsat 8 (Montanaro et al., 

2014) and the need to support Sentinel-2 data products necessitate algorithms both with and 

without thermal data to operationally generate cloud masks. Therefore, the CFMask series of 

algorithms are judged superior to all other cloud assessment algorithms for Landsat TM, ETM+, 

and OLI/TIRS products. The CFMask thermal algorithm is recommended for normal operational 

use, and the non-thermal variant is recommended when thermal data are not available. 
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