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A B S T R A C T

We developed a Time-series-based Reflectance Adjustment (TRA) approach for reducing the reflectance differ-
ences between Landsat 8 and Sentinel-2 observations. This TRA approach used the time series of matched
Landsat 8 and Sentinel-2 observations to build linear regression models to adjust reflectance differences between
the two sensors for each individual pixel and each spectral band. We evaluated this approach for the NASA
harmonized Landsat and Sentinel-2 (HLS) surface reflectance product (V1.4; https://hls.gsfc.nasa.gov/data/v1.
4/) and top-of-atmosphere (TOA) reflectance with approximately 4 years of temporal coverage at five Military
Grid Reference System (MGRS) tiles. Using this approach, the surface reflectance difference between Landsat 8
and Sentinel-2 in the HLS product reduced 45% for the blue band, 42% for the green band, 38% for the red band,
30% for the Near Infrared (NIR) band, 37% for the Shortwave Infrared (SWIR) 1 band, and 32% for the SWIR2
band. The TRA approach also reduced TOA reflectance difference between Landsat 8 and Sentinel-2 sub-
stantially, in which the blue band reduced 46%, the green and NIR bands reduced 42%, the red band reduced
48%, and the SWIR1 and SWIR2 bands reduced 44%. If the high aerosol observations were screened, the re-
flectance differences in the HLS product could be further reduced by 2–4% and the TOA reflectance differences
could be further reduced by 3–6% for the six spectral bands. The TRA approach has also shown good results in
reserving the spatial patterns and the heterogeneity of land surface. The transformation parameters estimated
from the TRA approach can be directly used for future Landsat 8 and Sentinel-2 reflectance adjustment, with
slightly lower (5%) reduction of reflectance difference.

1. Introduction

High temporal frequency Earth Observation (EO) satellites are pi-
votal for near real-time monitoring of land surface change (Zhu, 2017),
such as vegetation anomaly and phenology change (Liu et al., 2018;
Meroni et al., 2019), forest disturbance (Reiche et al., 2018; Tang et al.,
2019; Xin et al., 2013), disaster (Li et al., 2018), surface water change
(Pekel et al., 2014), and agriculture practices (Defourny et al., 2019).
However, most of the satellites with high temporal frequency are coarse
resolution satellites (250–1,000m), such as Moderate Resolution Ima-
ging Spectroradiometer (MODIS), Medium Resolution Imaging Spec-
trometer (MERIS), and Visible Infrared Imaging Radiometer Suite
(VIIRS), which are not ideal for detecting land surface change that are
usually occurring at a scale much smaller than their pixel sizes (Hansen
and Loveland, 2012; Xin et al., 2013). On the other hand, moderate
resolution satellites, such as Landsat, can provide observations at 30-m
spatial resolution, which is fine enough to monitor a variety of land-
scape change (Roy et al., 2014; Wulder et al., 2019; Zhu et al., 2019),

but its temporal resolution is not sufficient for near real-time mon-
itoring. For example, one Landsat satellite revisits the same location in
every 16 days, which means even with two Landsat sensors working at
the same time (e.g., Landsat 7 and 8), we can only visit the same place
in every 8 days (assuming no cloud and snow cover). Fortunately, the
recently launched Sentinel-2A and 2B have similar band designs as
Landsat (Drusch et al., 2012), and they together need 5 days to repeat
observations at 10-20-60 m spatial resolution, making it possible to
observe global land surface in every 2–4 days when Landsat and Sen-
tinel-2 satellites are combined (Li and Roy, 2017). Though Sentinel-2
can provide “Landsat-like” observations, they differ in the field of view,
spatial resolution, spectral bandwidth, and spectral response function
(Zhang et al., 2018). The difference introduced by different field of
view and spatial resolution can be reduced and solved by the Bidirec-
tional Reflectance Distribution Function (BRDF) correction (Kovalskyy
et al., 2016) and data resampling, respectively. However, the difference
caused by different spectral bandwidth and spectral response function
(hereafter referred to as reflectance difference) remains a challenge for
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the remote sensing community.
The linear regression approach has been widely used to reduce the

reflectance difference between the two similar satellite observations
(Chastain et al., 2019; Claverie et al., 2018; Flood, 2017; Mandanici and
Bitelli, 2016; Pahlevan et al., 2019; Zhang et al., 2018). For example,
regional fixed per-band transformation coefficients were generated for
reflectance adjustment in Australia (Flood, 2017), southern Africa
(Zhang et al., 2018), and the conterminous United States (Chastain
et al., 2019). Particularly, NASA Scientists proposed a method that
creates global fixed per-band transformation coefficients to reduce the
reflectance difference between Landsat 8 and Sentinel-2 for the har-
monized Landsat and Sentinel-2 (HLS) surface reflectance product
(Claverie et al., 2018). Though these methods can reduce reflectance
difference to some degree, large reflectance differences were still ob-
served (Fig. 1). Fig. 1a illustrates an example of the surface reflectance
difference between the Landsat 8 (L30) and Sentinel-2 (S30) blue band
surface reflectance in the HLS V1.4 product (hereafter referred to as
HLS product). The average difference in the HLS product (0.0183) was
37% (average difference/average S30×100%) of the magnitude of the
average S30 surface reflectance. Significant reflectance difference was
also observed between Landsat 8 and Sentinel-2 TOA reflectance, and
the average TOA reflectance difference (0.0176) was 17% of the mag-
nitude of the average Sentinel-2 TOA reflectance (Fig. 1b). It is possible
that the regional or global scale fixed per-band transformation coeffi-
cients may not be suitable for all land cover types and at all locations
(Chastain et al., 2019), consequently resulting in large differences be-
tween the harmonized Landsat 8 and Sentinel-2 surface reflectance. The
time-series-based model, which can build the reflectance adjustment
relationship for each pixel using the time series overlap of the two si-
milar satellite observations, can be a better choice for harmonizing
Landsat 8 and Sentinel-2 surface and TOA reflectance.

Here, we aim to improve the consistency of the Landsat 8 and
Sentinel-2 surface (the HLS product) and TOA reflectance using a newly
developed Time-series-based Reflectance Adjustment (TRA) approach.
This time-series-based approach used the time series of matched
Landsat 8 and Sentinel-2 observations to build linear regression models
for each pixel and then conduct the reflectance adjustment for each
individual pixel separately. We explored the optimal matching method
for building the time-series-based model based on the HLS product at
five sites and assessed the capability of the TRA approach for reserving
the spatial patterns and the heterogeneity of land surface. The influ-
ences of high aerosol screening on the TRA adjustment of surface and
TOA reflectance were also evaluated. Finally, we assessed whether the
transformation parameters estimated from the TRA approach can be
directly used for future Landsat and Sentinel-2 reflectance adjustment.

2. Data and methods

2.1. Data

The Harmonized Landsat and Sentinel-2 (HLS) V1.4 surface re-
flectance product (Claverie et al., 2018), which spans from January
2015 to April 2019 (approximately 4 years of temporal coverage for
Sentinel-2A), was used to develop and evaluate the TRA approach. It
provides consistent and harmonized 30-m surface reflectance derived
from Landsat 8 (L30) and Sentinel-2 (S30) with the Military Grid Re-
ference System (MGRS) in the Universal Transverse Mercator (UTM)
projection. Four processes involved in the creation of this product: (i)
atmospheric correction and cloud masking, (ii) geometric resampling
and geographic registration, (iii) BRDF correction, and (iv) spectral
bandwidth and spectral response function (or bandpass) adjustment
(Claverie et al., 2018). This bandpass adjustment (hereafter referred to
as HLS bandpass adjustment) used a linear regression model with fixed
per-band regression coefficients to further reduce the reflectance dif-
ference between Landsat 8 and Sentinel-2 surface reflectance at the
global scale (Claverie et al., 2018). Note that we did not use the HLS
S30 surface reflectance directly. Instead, we used the BRDF-corrected
Sentinel-2 surface reflectance from the first three steps (hereafter re-
ferred to as NadirS30), which was derived by reversing the HLS
bandpass adjustment from the S30 surface reflectance based on the
fixed per-band regression coefficients provided in the HLS product
(Table 1). Three visible bands (Red, Green, and Blue), one near-infrared
(NIR) band, and two shortwave infrared bands (SWIR1 and SWIR2)
were chosen for reflectance adjustment here (The detailed band num-
bers of Landsat 8 and Sentinel-2 are shown in Table 1). The QA band in
the HLS product provides information about cirrus, cloud, adjacent
cloud, cloud shadow, snow/ice, water, and aerosol quality. The aerosol
quality includes four levels: climatology, low, average and high. In this
study, we masked out the cirrus, cloud, adjacent cloud, and cloud
shadow pixels. The water and snow/ice pixels were also excluded to
focus on land surface monitoring. Note that the aerosol quality was not

Fig. 1. An example of reflectance difference between L30 and S30 blue band surface reflectance derived from the HLS V1.4 products (a), and between L8TOA and
S2TOA blue band top-of-atmosphere (TOA) reflectance (b). The black lines are the estimated curves of the L30 and L8TOA based on the Fourier approach (Dash et al.,
2010) with 10 harmonics, respectively. The invalid observations (cloud, cloud shadow, and snow) were screened by the QA band in the HLS product. HLS:
Harmonized Landsat and Sentinel-2 data product; L30: Landsat 8 data in the HLS product at 30-m resolution; S30: Sentinel-2 data in the HLS product at 30-m
resolution; L8TOA: Landsat 8 TOA reflectance; S2TOA: the resampled Sentinel-2 TOA reflectance at 30-m resolution. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)

Table 1
Bandpass adjustment coefficients in the HLS V1.4 products.

Band Name Landsat 8 band
number

Sentinel-2 band
number

Slope Intercept

Blue 2 2 0.9778 −0.004
Green 3 3 1.0053 −0.0009
Red 4 4 0.9765 0.0009
NIR 5 8A 0.9983 −0.0001
SWIR1 6 11 0.9987 −0.0011
SWIR2 7 12 1.003 −0.0012
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used to mask out the high aerosol pixels for building the reflectance
adjustment relationship because the majority of pixels with thick
aerosols were also identified by the cloud mask (Zhu and Woodcock,
2012), but the influence of high aerosols on reflectance adjustment
would be evaluated. The GlobeLand30 land cover product (Chen et al.,
2015) was used to provide land cover information for all harmonized
observations.

Landsat 8 and Sentinel-2 TOA reflectance were also used to evaluate
the TRA approach. Google earth engine (GEE) was used to preprocess
and download Landsat 8 and Sentinel-2 TOA reflectance (Gorelick
et al., 2017). For Landsat 8, both Collection 1 Tier 1 (T1) and Tier 2
(T2) data were downloaded (hereafter referred to as L8TOA). We first
re-projected the L8TOA to the projection of the HLS product and then
clipped the L8TOA using the MGRS tile extent. For Sentinel-2, L1C data
(hereafter referred to as S2TOA) were first resampled to 30-m spatial
resolution and then downloaded through the MGRS tile. Red, green,
and blue bands were resampled from 10-m spatial resolution, and NIR,
SWIR1, and SWIR2 bands were resampled from 20-m spatial resolution.
Resample in GEE was based on the overlap between the input and
output images, and the input pixel weights were calculated as the ratio
of the output pixel area covered by the input pixel. Note that cloud
masks of the L8TOA and S2TOA were different from cloud masks in the
HLS product. To keep consistency, we use the QA bands from the HLS
product to label the quality of the L8TOA and S2TOA data instead of
their own QA bands.

2.2. Study area

Five MGRS tiles (Fig. 2) were chosen for reflectance adjustment
according to the land cover types, locations, and the quality of Landsat
8 and Sentinel-2 data (e.g., the frequency of cloud cover and aerosols).
The DE site (Tile ID: 32UNA) and the TIF site (Tile ID: 17RKQ) were
selected due to the frequent cloud cover. The DE site was mainly cov-
ered by cropland under the oceanic climate in Europe, while the TIF site
was mainly covered by forest and cropland under the humid subtropical
climate in North America. The SHA site (Tile ID: 50SMF) was chosen for
its potential of high aerosols, and this site was mainly covered by the
cropland with more than one growing season under the humid con-
tinental climate in China. The SEA site (Tile ID: 54JYP) was selected for

less cloud cover, and it mainly includes grassland and forest under the
semi-arid climate in Australia. The TZ site (Tile ID: 36MWS) was mainly
covered by forest and grassland under the tropical savanna climate in
Africa, and it was selected for its frequent cloud cover in the wet season.
The land cover map of the five tiles derived from the GlobeLand30 land
cover dataset (Chen et al., 2015) is shown in Fig. 3, and the percentages
of invalid observations (cloud, cloud shadow, water, and snow) of the
five sites are shown in Fig. S1.

2.3. Methods

The TRA approach establishes a reflectance adjustment relationship
for each pixel and for each spectral band using matched Landsat 8 and
Sentinel-2 observations. This approach had three major steps as follows
(Fig. 4): (i) match Landsat 8 and Sentinel-2 observations; (ii) build re-
flectance adjustment relationship for each pixel and each spectral band;
and (iii) reflectance adjustment for Sentinel-2 images. Note that for
reflectance adjustment of the HLS data, we will apply the TRA approach
for the HLS data without the HLS bandpass adjustment. Basically, we
will reverse their reflectance adjustment to transfer S30 to NadirS30
using the linear regression model with the fixed per-band regression
coefficients (Table 1).

2.3.1. Match Landsat 8 and Sentinel-2 observations
Ideally, we can have Landsat 8 and Sentinel-2 observations collected

within the same date for building the reflectance adjustment relation-
ship. However, in reality, the acquisition dates of Landsat 8 and
Sentinel-2 are usually different, and it is almost impossible to collect
enough clear-sky Landsat 8 and Sentinel-2 observations within the same
date for building the reflectance adjustment relationship. Here, we as-
sumed that data collected close in time should have similar values (Qiu
et al., 2019; Zhu et al., 2010), and used Landsat 8 observation collected
within± 1 day of the Sentinel-2 acquisition date to match the Sentinel-
2 observation (hereafter referred to as the one-day matching method).
For example, if S30 is obtained on DOY (day-of-year) 120, then L30
obtained from DOY 119 to DOY 121 will be used to match NadirS30. In
this way, many Sentinel-2 observations could be matched with a
Landsat 8 observation, and there could be sufficient pairs of clear-sky
Landsat 8 and Sentinel-2 observations collected to build the reflectance

Fig. 2. Five MERS tiles and their site names. The background is the 1:50m Natural Earth I with Shaded Relief dataset (version 3.2.0; https://www.naturalearthdata.
com/) and colors are based on land cover. The central location is (9.77°E, 50.05°N) for the DE site, (143.60°E, 28.49°S) for the SEA site, (116.49°E, 36.55°N) for the
SHA site, (83.57°W, 31.11°N) for the TIF site, and (33.50°E, 7.73°S) for the TZ site. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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adjustment relationship for 87.25% of pixels at the entire study area.
We compared reflectance adjustment performances using different
temporal windows (window size= 1, 2 and 3 days) to match L30 and
NadirS30 (Fig. S2), and the optimum result was achieved when the
window size was equal to± 1 day (Fig. S2).

The current Sentinel-2 cloud mask used in the HLS product was a
combination of the mask generated by the Fmask V3.3 algorithm (Zhu
et al., 2015) and the mask derived from the LaSRC v3.5.5 atmospheric
correction tool. This cloud mask would miss many cloud observations
due to the lack of a thermal infrared band (Claverie et al., 2018), and
some outlier filtering approaches are needed to screen these missed
clouds. In this study, we adopted a filter designed by Zhang et al. (2018)
to exclude cloud observations that were missed in the HLS QA band by
comparing Landsat 8 and Sentinel-2 blue band reflectance:

− > × +− −ρ ρ ρ ρ0. 5blue Landsat blue Sentinel blue Landsat blue Sentinel, 8 , 2 , 8 , 2

(1)

where, ρblue Landsat, 8 and −ρblue Sentinel, 2 are the matched Landsat 8 and
Sentinel-2 surface reflectance, respectively. This filter is designed based
on the fact that the blue band is very sensitive to atmospheric influences
(Ju et al., 2012) and the blue band reflectance of land surface is usually
much lower than cloud and snow (Hagolle et al., 2010). The pairs of
observations with one clear and one cloudy would be rejected, and
some outliers due to “over correction” by LaSRC would also be screened
(Zhang et al., 2018).

2.3.2. Build the reflectance adjustment relationship for each pixel
The linear regression model was used to build the reflectance ad-

justment relationship between Landsat 8 and Sentinel-2 surface re-
flectance for all the six bands (Eq. (2)):

= × +y(Λ) a(Λ)   x(Λ) b(Λ) (2)

where, Λ is the band index, x(Λ) is the NadirS30 surface reflectance,
y(Λ) is the L30 surface reflectance, and a(Λ) and b(Λ) are the estimated
parameters. The estimated parameters for each pixel were obtained by
minimizing the difference between the matched NadirS30 and L30

surface reflectance. As linear regression model without intercept (y
(Λ) = a(Λ) × x(Λ)) also demonstrated good performance in TOA re-
flectance calibration between MODIS and Landsat-7 data (Chander
et al., 2013), we compared the performance of the linear regression
model with and without intercept. Results showed that, without using
the intercept, the reduced percentage of reflectance differences in the
HLS product decreased 7% for the blue band, 4% for the green band,
3% for the red band, 5% for the NIR band, 2% for the SWIR1 band, and
3% for the SWIR2 band (Fig. S3), suggesting that linear regression
model with intercept is a better option. For pixels with at least four
pairs of matched clear-sky Landsat 8 and Sentinel-2 observations
(hereafter referred to as Valid Pair of Observations, VPO), the re-
flectance adjustment relationship could be derived directly. But for
pixels with frequent cloud covers, they may have less than four VPOs,
and to adjust the reflectance for those pixels, we need to make full use
of the unmatched clear-sky Landsat 8 and Sentinel-2 observations by
using time series interpolation to match Sentinel-2 observations with
interpolated Landsat 8 observations.

We evaluated five different time series interpolation approaches
combined with three different matching methods to determine the
optimal interpolation and matching methods. Five time series inter-
polation approaches included the linear interpolation (shortened to
Linear), the locally adjusted cubic spline capping (LACC) approach
(Chen et al., 2006), the Fourier approach (Dash et al., 2010), the Sa-
vitzky-Golay (SG) filter (Chen et al., 2004), and the iterative inter-
polation for data reconstruction (IDR) (Julien and Sobrino, 2010) were
used to reconstruct daily L30 reflectance (hereafter referred to as In-
terpolateL30) based on all valid L30 reflectance. The three matching
methods included (i) same-day matching method, which used Inter-
polateL30 within the same acquisition date of Sentinel-2 to match all
NadirS30; (ii) one-day and interpolation matching method, which first
used one-day matching method to match L30 and NadirS30, and then
used same-day matching method to match InterpolateL30 and un-
matched NadirS30; and (iii) one-day and valid interpolation matching
method, which first used one-day matching method to match L30 and
NadirS30, and then used same-day matching method to match “good

Fig. 3. Land cover maps derived from the GlobeLand30 land cover dataset (Chen et al., 2015) at the five sites.
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quality” InterpolateL30 and unmatched NadirS30. The three different
matching methods were created based on the assumption that actual
observation is more accurate than the interpolated values and some of
the interpolated values may have large errors due to the lack of avail-
able observations. The quality of an interpolated observation was la-
beled as “good” if there are valid L30 observations within±16 days
(this threshold was determined from the Landsat-8 16-day revisit fre-
quency); otherwise, it was labeled as “poor quality”. This quality as-
sessment was conducted to minimize the influence of persistent cloud
or snow covers which could cause an unreliable reconstruction for
many time series interpolation approaches (Liu et al., 2017). Fig. S2
shows the performance of reflectance adjustment using 15 different
kinds of approaches (3 matching methods× 5 interpolating methods),
in which the third matching method (one-day and valid interpolation
matching method) showed the best results for all 5 interpolating
methods. When using the third matching method, linear interpolation
and the Fourier approach performed much better than the other three
approaches, and they were also slightly better than the two-days and
three-days matching methods. Since linear interpolation performed
slightly better than the Fourier approach and it is more efficient, the
third method with linear interpolation was selected as the optimal
matching and interpolating method, and would be used for the pixels
where there were less than 4 one-day matched VPOs. However, for
some extreme cases, even the optimal matching and interpolating
method may not have enough VPOs. Fig. 5 shows the spatial distribu-
tion of the number of VPOs using the one-day, two-days, three-days
matching methods, and the optimal matching and interpolating method

proposed here. Though the optimal matching and interpolating method
can work for 98.36% of pixels at the entire study area (the detailed
percentage for each site are shown in Table S2), there are still pixels
with less than four VPOs. For these pixels, a backup algorithm with a
3×3 spatial window would be applied. The reflectance adjustment
relationship for these pixels would be built by using all VPOs within the
3×3 spatial window, and they would be labeled in their output QA.

2.3.3. Reflectance adjustment for Sentinel-2 observations
After the reflectance adjustment relationship was built for each

pixel, the reflectance adjustment will be applied for each pixel using the
previously built linear regression model. All the pixels in a Sentinel-2
image would be adjusted if the original reflectance and the adjusted
reflectance values both ranged from 0 to 1. The output QA band of the
adjusted Sentinel-2 image was set into 8 different values according to
its input QA band and whether the backup algorithm was used: 1
(Clear), 2 (Clear but use the backup algorithm), 3 (Cloud), 4 (Cirrus), 5
(Shadow), 6 (Snow/ice), 7 (Water), and 255 (Filled value).

2.4. Evaluating TRA performance

The Root Mean Square Difference (RMSD) value was used as the
indicator to quantitatively evaluate the reflectance difference between
Landsat 8 and Sentinel-2 observations (Eq. (3)). The clear-sky Landsat 8
observations collected within± 1 day of Sentinel-2 observations were
used as the reference, and the RMSD was calculated based on the dif-
ferences between Landsat 8 and Sentinel-2 reflectance for each pixel as

Fig. 4. Flowchart of the TRA approach applied to the HLS product.
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shown in Eq. (3):

∑= −i i NRMSD(Λ) [ ρ (Λ, ) ρ (Λ, )] /
i

Landsat Sentinel 2

(3)

where, Λ is the band index, iρ (Λ, )Landsat is Landsat 8 reflectance,
iρ (Λ, )Sentinel is the original or adjusted Sentinel-2 reflectance, i is the i th

pair of matched reflectance, and N is the total counts of matched re-
flectance. The mean RMSD for each tile, land cover type, and the entire

Fig. 5. The counts of valid pairs of observations
(VPO) collected with the one-day (1D), two-days
(2D), and three-days (3D) matching methods and the
optimal (Linear) matching method for building the
reflectance adjustment relationship at the five sites.
The yellow and green colors (count of VPOs≥ 4)
work for the TRA approach. (For interpretation of the
references to color in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 6. The reflectance differences (ex-
panded 10,000 times) between Landsat 8
and Sentinel-2 surface reflectance in the
HLS product and TOA reflectance for six
spectral bands at the five sites. (a) was cal-
culated between L30 and NadirS30, (b) was
calculated between L30 and S30, and (c)
was calculated between Landsat 8 and
Sentinel-2 TOA reflectance.
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study area were used to indicate the overall performance of the TRA
approach. For convenience, the calculated RMSDs were expanded
10,000 times in magnitude. We divided the time series observations of
each individual pixels into two parts for evaluating TRA performance,
with 75% randomly selected to build the reflectance adjustment re-
lationship and the remaining 25% used for evaluation. Note that for the
algorithm development (e.g., selecting the optimal matching and in-
terpolating methods), we only selected 5,000 pixels randomly (spa-
tially) for each site for efficiency.

One of the key issues using the time-series-based reflectance ad-
justment approach is whether the spatial patterns and heterogeneity of
land surface would be changed by the reflectance adjustment approach,
and we evaluated this by calculating the semi-variogram of the adjusted
images (Equation (4)).

= ∑ + −
=N

ρ x h ρ xγ(h, Λ) 1
2

( ( ,Λ) ( ,Λ))i
N

i i1
2

(4)

where, Λ is the band index, ρ x( ,Λ)i is the reflectance at the location of
xi, +ρ x h( ,Λ)i is the reflectance at a distance of h from xi, i is the
number index, and N is the total counts of reflectance values at the
distance of h with all directions. We chose the SWIR1 band to assess the
ability of the TRA approach for reserving the spatial patterns of land
surface due to its large variation in reflectance values. For each site, the
pair of Landsat 8 and Sentinel-2 images acquired close in time, with a
high percentage of overlapped clear-sky observations were chosen to
calculate the semi-variogram (The acquisition dates of selected Landsat
8 and Sentinel-2 images are given in Table S1). There were up to

3660×3660 pixels at a site, and we randomly selected 20,000 clear-
sky pixels to represent the whole site for calculating the semi-vario-
gram. If the shape of semi-variograms of the adjusted Sentinel-2 images
doesn't change (compared to original Sentinle-2 images), we think this
approach has reserved the spatial patterns of land surface.

3. Results

3.1. HLS and TOA reflectance difference

The HLS product used a fixed set of bandpass adjustment para-
meters (Claverie et al., 2018) to reduce the bandpass differences at the
global scale, but there were still observable surface reflectance differ-
ences. Fig. 6 illustrates the surface reflectance difference (indicated by
mean RMSDs) between matched (within±1 day) Landsat 8 and Sen-
tinel-2 observation pairs before (Fig. 6a) and after (Fig. 6b) the HLS
bandpass adjustment for six spectral bands at the five sites (a total of 30
band-sites, hereafter we use the term “band-site” to represent one
spectral band at one site). We found Fig. 6a and b are very similar, and
for some band-sites, the RMSDs even increased after NASA's HLS
bandpass adjustment. We also evaluated the RMSDs for different land
cover types, and they varied wildly among different land cover types
(Fig. 7a and Fig. 7b), which demonstrated the importance of building
reflectance adjustment relationship for each individual pixel, instead of
sharing the same adjustment relationship for all pixels.

The reflectance differences between Landsat 8 and Sentinel-2 TOA
reflectance for six spectral bands were also evaluated by the mean

Fig. 7. The reflectance differences (expanded 10,000 times) between Landsat 8 and Sentinel-2 surface reflectance in the HLS product and TOA reflectance for
different land cover types. (a) was calculated between L30 and NadirS30, (b) was calculated between L30 and S30, and (c) was calculated between Landsat 8 and
Sentinel-2 TOA reflectance.
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Fig. 8. The generation of reflectance adjustment relationship (a, c) and the reflectance adjustment on the blue band for HLS product (b) and TOA reflectance (d) by
the TRA approach for the same pixels in Fig. 1. The black dot lines in (a, c) are 1:1 line. The black lines in (b, d) are the fitted curves of the L30 and L8TOA based on
the Fourier approach, respectively. L30: Landsat 8 data in the HLS product; NadirS30: Sentinel-2 surface reflectance before HLS bandpass adjustment; S30A: the
adjusted Sentinel-2 surface reflectance; L8TOA: Landsat 8 TOA reflectance; S2TOA: the resampled Sentinel-2 TOA reflectance at 30-m spatial resolution; adjust-
S2TOA: the adjusted Sentinel-2 TOA reflectance. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)

Fig. 9. The mean RMSDs (expanded 10,000 times) before and after the TRA adjustment and the reduced percentage of mean RMSDs based on the HLS product (a) and
TOA reflectance (b) for six spectral bands for all five sites.
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RMSDs. Fig. 6c shows the mean RMSDs between Landsat 8 and Sen-
tinel-2 TOA reflectance for six spectral bands at the five sites. Compared
to HLS surface reflectance, TOA reflectance generally had a larger re-
flectance difference for the six spectral bands. The average difference of
TOA reflectance across the study area was 1.4–1.7 times the average
difference of surface reflectance in the HLS product. These results re-
vealed that atmospheric correction and BRDF correction could reduce
part of the reflectance difference between Landsat 8 and Sentinel-2
observations. Similar to HLS surface reflectance, TOA reflectance dif-
ference varied largely for different kinds of land cover types (Fig. 7c).

3.2. Reduce HLS and TOA reflectance difference using TRA

The TRA approach can reduce both HLS and TOA reflectance dif-
ference between Landsat 8 and Sentinel-2 substantially (Fig. 8). Fig. 8a
and b demonstrates the process of building the reflectance adjustment
relationship and adjusting the HLS product for the same pixel shown in
Fig. 1 based on the TRA approach, respectively. Fig. 9a illustrates the
mean RMSDs before and after the TRA adjustment, and the reduced
percentage of mean RMSDs based on the HLS product for six spectral
bands at the five sites. Note that the mean RMSD before the reflectance

adjustment at each band-site was slightly different from that in Fig. 6b,
because the mean RMSD calculated here was only based on the ran-
domly selected 25% of observations. By applying the TRA approach, the
reflectance difference in the HLS product reduced 45% for the blue
band, 42% for the green band, 38% for the red band, 30% for the NIR
band, 37% for the SWIR1 band, and 32% for the SWIR2 band. And the
remaining reflectance difference (expanded 10,000 times) was 41.20
for the blue band, 48.76 for the green band, 66.57 for the red band,
121.77 for the NIR band, 125.35 for the SWIR1 band, and 101.48 for
the SWIR2 band.

The TOA reflectance difference between Landsat 8 and Sentinel-2
could also be reduced by the TRA approach. Fig. 8c and d presents the
process of building the reflectance adjustment relationship and ad-
justing the TOA reflectance for the same pixel shown in Fig. 1 based on
the TRA approach, respectively. Though the built relationship
(R2= 0.9736) was slightly weaker than that of the HLS product
(R2= 0.9982), the TRA approach performed well on reducing the TOA
reflectance difference. Fig. 9b shows the mean RMSDs before and after
the TRA adjustment on TOA reflectance and the reduced percentage of
mean RMSDs for six spectral bands at the five sites. After applying the
TRA adjustment, the difference between Landsat 8 and Sentinel-2 TOA

Fig. 10. The reflectance difference before and after the TRA adjustment and the reduced percentages of reflectance difference for different land cover types based on
the HLS product (a) and TOA reflectance (b).
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reflectance reduced 46% for the blue band, 42% for the green band,
48% for the red band, 42% for the NIR band, 44% for the SWIR1 band,
and 44% for the SWIR2 band. The reduced percentage of TOA re-
flectance difference by the TRA approach was up to 12% higher com-
pared with that on the HLS product, suggesting a better performance of
reflectance adjustment on TOA reflectance than that on surface re-
flectance. The remaining TOA reflectance difference after the TRA ad-
justment was even smaller than the surface reflectance difference in the
HLS product without the TRA adjustment.

The reduction of reflectance difference by the TRA approach varied
among different land cover types. Fig. 10a shows the reflectance dif-
ference before and after the TRA adjustment and the reduced percen-
tages of reflectance difference in the HLS product for different land
cover types. Grassland had the largest reduction of reflectance differ-
ence in three visible bands (52% for the blue band, 47% for the green
band, and 42% for the red band); while in the NIR and SWIR bands,
shrubland had the largest reduction of reflectance difference (38% for
the NIR band, 45% for the SWIR1 band, and 37% for the SWIR2 band).
Artificial surfaces had the smallest reduction of reflectance difference
(36%) in the blue band, and bare land had the smallest reduction of
reflectance difference in the green (33%), red (31%), NIR (30%),
SWIR1 (29%), and SWIR2 (29%) bands. Fig. 10b shows the TOA re-
flectance difference before and after the TRA adjustment and the re-
duced percentages of TOA reflectance differences for different land
cover types. The patterns of reducing TOA reflectance difference among
different land cover types were very similar to that for reducing HLS
reflectance difference. These discrepancies in the reflectance differ-
ences and the reduction of reflectance differences by the TRA adjust-
ment among different land cover types further confirmed the require-
ment of time-series-based reflectance adjustment approach for
harmonizing Landsat 8 and Sentinel-2 surface reflectance and TOA re-
flectance.

3.3. Assess TRA's ability to reserve the spatial patterns of land surface

Whether the spatial patterns will be changed is one of the key issues
using the time-series-based reflectance adjustment approach. The semi-
variogram was used to assess the ability of the TRA approach for

reserving the spatial patterns of land surface. Fig. 11 shows the semi-
variograms calculated from Landsat 8, Sentinel-2 and the adjusted
Sentinel-2 images in the SWIR1 band at the five sites. The semi-vario-
gram generally increased with the increase of distance at the five sites.
Landsat 8 and Sentinel-2 images observed the same land surface and
their semi-variograms had the same shapes, but significant offsets were
observed between their semi-variograms, indicating that the reflectance
differences between these two sensors varied spatially. The semi-var-
iograms derived from Landsat 8 image were higher than that derived
from Sentinel-2 image at the DE, SEA, SHA and TIF sites, while it was
lower than that of Sentinel-2 at the TZ site which might be explained by
the lower SWIR1 band surface reflectance of Landsat 8 than Sentinel-2
at this site. By applying the TRA adjustment, the offsets between the
semi-variograms derived from Landsat 8 and Sentinel-2 images de-
creased at all five sites, and we did not observe any change of the semi-
variograms shape. Fig. 12 shows a typical example of the TRA adjust-
ment for the clipped Landsat 8 and Sentinel-2 images (300×300
pixels) at the five sites. The first three columns are the true color
composited RGB images derived from Landsat 8 (L30), Sentinel-2 (S30)
and the adjusted Sentinel-2 (S30A), and the last two columns are ab-
solute differences in SWIR1 band surface reflectance between L30 and
S30 and between L30 and S30A, respectively. The acquisition date of
Landsat 8 and Sentinel-2 images and the subregion extent at the five
sites were summarized in Table S1. The reflectance differences between
Landsat 8 and Sentinel-2 were significantly reduced by the TRA ap-
proach, and the spatial patterns and heterogeneity of land surface in
Sentinel-2 RGB images kept the same after the TRA adjustment. These
results suggested that the TRA approach had the ability to reserve the
spatial patterns and heterogeneity of land surface.

4. Discussion

4.1. Evaluate TRA's capability of adjusting future Sentinel-2 images

To evaluate TRA's capability in adjusting future Sentinel-2 images
(hereafter referred as to external evaluation), we used the first 75% of
observations to build the reflectance adjustment relationship and the
last 25% of observations for evaluation. Fig. 13a shows the mean

Fig. 11. The semi-variograms calculated from Landsat 8, Sentinel-2, and the adjusted Sentinel-2 images at the SWIR1 band for the five sites.
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RMSDs before and after the TRA adjustment and the reduced percen-
tage of mean RMSDs based on the HLS product for the six spectral
bands for all five sites. By applying the TRA approach, the reflectance
difference in the HLS product reduced 42% for the blue band, 37% for
the green band, 38% for the red band, 29% for the NIR band, 35% for
the SWIR1 band, and 31% for the SWIR2 band. The reduced percentage
of mean RMSDs for the six spectral bands was up to 5% lower than they
are evaluated in Section 3.2.

We also evaluated TRA's capability for adjusting future Sentinel-2
TOA reflectance following the same procedure. Fig. 13b shows the
mean RMSDs before and after the TRA adjustment and the reduced
percentage of mean RMSDs based on TOA reflectance for the six spec-
tral bands for all five sites. After the TRA adjustment, the difference of
TOA reflectance reduced 45% for the blue band, 39% for the green
band, 47% for the red band, 40% for the NIR band, 41% for the SWIR1
band, and 42% for the SWIR2 band. The reduced percentage of mean
RMSDs for the six spectral bands was up to 3% lower than they are
evaluated in Section 3.2. Compared to the external evaluation of the
HLS product, the remaining TOA reflectance differences were slightly
larger, but the reduced percentage of reflectance difference by the TRA

approach was up to 11% higher.
Both results indicate the generated transformation parameters based

on the historical data could be used to adjust future Sentinel-2 images,
though the reduction of reflectance difference would be slightly smaller
than that using the updated transformation parameters with all data.

4.2. Evaluation of the unmatched Sentinel-2 observations

We evaluated the TRA approach based on matched Landsat 8 and
Sentinel-2 observations that are collected within±1 day, but this could
not provide an evaluation for Landsat 8 and Sentinel-2 observations
that are more than±1 day apart. To evaluate these unmatched ob-
servations, we compared them with the same day optimally inter-
polated Landsat 8 observations. As interpolation can have large artifact
when there is no real observation, we only use the interpolated values
that are within the± 16 days of clear Landsat 8 observations. Fig. S4
shows the mean RMSDs (expanded 10,000 times) before and after the
TRA adjustment and the reduced percentage of mean RMSDs for the
unmatched Sentinel-2 observations in the HLS product and TOA re-
flectance. It is obvious that the TRA approach can also reduce

Fig. 12. The true color RGB images of the clipped Landsat 8 observations (L30), the Sentinel-2 observations (S30) and the adjusted Sentinel-2 observations (S30A),
and their absolute difference images of the SWIR1 band surface reflectance. “|S30-L30|” is the absolute difference of SWIR1 band surface reflectance between S30
and L30 and “|S30A-L30|” is the absolute difference of SWIR1 band surface reflectance between S30A and L30. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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reflectance differences for all the unmatched observations, though the
reduction of reflectance difference was slightly lower (8%) than that on
the matched observations, which may contribute both from the artifact
of interpolation and changes in land surface.

4.3. The influence of land change on reflectance adjustment

We also evaluated whether the land change would influence the
reflectance adjustment. Fig. 14 shows the reflectance difference, the
generation of reflectance adjustment relationship, and the reflectance
adjustment for a pixel that has undergone change based on the HLS
product and the TOA reflectance. The change happened during the time
period from May to June 2016 (Fig. 14a and d). Two situations were
included in the generation of reflectance adjustment relationship
(Fig. 14b and e): one was using all the observations after the change and
the other was using all observations. For both surface reflectance and
TOA reflectance, the established relationships from all observations
were slightly weaker than the built relationship from the observations
after disturbance, but the two relationships both performed well on
reducing the reflectance difference (Fig. 14c and f). This example sug-
gested that land change had limited impact on the generation of re-
flectance adjustment relationship. Note that for some ephemeral
changes, such as snow observations, they can change land surface
within a day, which can have large impacts on the TRA approach.
Therefore, we exclude all snow observations for building and applying
the reflectance adjustment in the TRA approach.

4.4. The influence of aerosol screening on reflectance adjustment

We also explored the impacts of aerosols on reflectance adjustment.
Fig. 14 shows the mean RMSDs before and after the TRA adjustment
and the reduced percentage of mean RMSDs based on the HLS product
and TOA reflectance after excluding all high aerosol observations. The
percentages of pixels that can be adjusted by the TRA approach for each

site after high aerosol screening were shown in Table S3. High aerosol
screening decreased the percentage of pixels that can be adjusted from
99.94% to 99.77% at the entire study area, but the reflectance differ-
ence in the HLS product was further reduced by 2–4% for the six
spectral bands, and the remaining reflectance differences were reduced
to 36.13 for the blue band, 42.57 for the green band, 56.89 for the red
band, 109.74 for the NIR band, 112.41 for the SWIR1 band, and 89.70
for the SWIR2 band (Fig. 15a). When applying high aerosol screening
on TOA reflectance, the reflectance differences could be further reduced
by 3–6% (Fig. 15b), and the remaining reflectance differences were
comparable to the remaining reflectance differences in the HLS product
after the TRA adjustment without high aerosol screening. Therefore,
high aerosol screening can further improve the TRA approach, but may
also reduce the percentage of pixels that can be adjusted by TRA.

5. Conclusion

This study proposed a time-series-based reflectance adjustment ap-
proach (TRA) to reduce the reflectance difference between Landsat 8
and Sentinel-2 surface reflectance from the HLS product and TOA re-
flectance. The source code is publicly available at https://github.com/
GERSL/TRA. This TRA approach used the time series of matched
Landsat 8 and Sentinel-2 observations to build linear regression models
for reflectance adjustment at the pixel level. We evaluated this ap-
proach on the NASA harmonized Landsat and Sentinel-2 (HLS) V1.4
surface reflectance product and TOA reflectance with approximately 4
years of temporal coverage at five MGRS tiles. Using this approach, the
reflectance difference in the HLS product reduced 45% for the blue
band, 42% for the green band, 38% for the red band, 30% for the NIR
band, 37% for the SWIR1 band and 32% for the SWIR2 band. The re-
flectance difference between Landsat 8 and Sentinel-2 TOA reflectance
reduced 46% for the blue band, 42% for the green band, 48% for the
red band, 42% for the NIR band, 44% for the SWIR1 band, and 44% for
the SWIR2 band. The TRA approach was accurate for both matched and

Fig. 13. The mean RMSDs (expanded 10,000 times) before and after the TRA adjustment and the reduced percentage of mean RMSDs based on the HLS V1.4 product
(a) and TOA reflectance (b) for six spectral bands for all five sites under the external evaluation.
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unmatched observations, robust to change pixels, and can be applied
directly for harmonizing future observations. If high aerosol observa-
tions were screened, the reflectance differences in the HLS product
could be further reduced by 2–4% and the TOA reflectance differences
could be further reduced by 3–6% for the six spectral bands. The re-
duction of these reflectance differences varies among different land
cover types. The TRA approach could also be applicable for improving
data consistency between other similar sensors (e.g., Landsat 4, 5, 7,
and Sentinel-2A) as long as there is a temporal overlap between them.
Compared to the conventional approaches using fixed per-band trans-
formation coefficients, the TRA approach is more complicated, and the
performance of TRA could be influenced by persistent cloud covers or
rapid land surface changes. Nevertheless, the per-pixel time-series-
based character of the TRA approach crosses the limitations of the
conventional fixed transformation coefficients approaches and can
provide more accurate reflectance adjustment. With more observations
accumulated in the future, the percentage of pixels relying on temporal

interpolations and a 3× 3 spatial window will be greatly reduced.
Moreover, some other spatio-temporal interpolation approaches (Yan
and Roy, 2018) considering both spatial and temporal information, can
also be tested as possible future improvements.
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