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Urban and peri-urban environments are composed of a wide variety of materials, making land cover
classification challenging. The objective of this research is to determine how effectively multi-season Landsat
Enhanced Thematic Mapper Plus (ETM+) and single-season Advanced Land Observing Satellite (ALOS)
Phased Array type L-band Synthetic Aperture Radar (PALSAR) data can be combined to map 17 land cover
categories in the Greater Boston area of, Massachusetts, USA. The key goal of this work is to test the integration
of radar and optical data. The contribution of different dimensions of input data to a random forest classifier
was evaluated with map accuracy statistics. PALSAR data produced a 30.99% overall classification accuracy.
Higher classification accuracy (72.24%) was achieved by adding texture variables derived from the PALSAR
data. A September Landsat image produced a map accuracy of 77.96%. The inclusion of Landsat images from
other three seasons increased map accuracy to 86.86% and Landsat derived texture variables further increased
the map accuracy to 92.69%. The highest map accuracy (93.82%) was achieved by combining Landsat and
PALSAR. Though combining PALSAR and Landsat only increased the overall accuracy by 1.1%, it was a
statistically significant increase, whose magnitude was limited by the high accuracy already achieved with
Landsat data. Moreover, confusionmatrices and land cover maps indicated that most of this increase was from
three urban land cover types (low density residential, high density residential, and commercial/industrial). The
results demonstrate the value of combining multitemporal Landsat imagery, ALOS PALSAR data, and texture
variables for land cover classification in urban and peri-urban environments.
l rights reserved.
© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Image classification has a long history in the remote sensing
community. It is the basis for many applications, such as carbon
modeling, land use change, forest management, and crop yield
estimation (Jung et al., 2006; Lark & Stafford, 1997; Wolter et al.,
1995; Woodcock et al., 2001). Many classifiers have been developed
and tested for land cover classification, such as maximum likelihood,
neural networks, decision trees, support vectormachines, and random
forest (Breiman, 2001; Friedl et al., 2010; Gopal et al., 1999; Hansen et
al., 2000; Huang et al., 2002; Lu & Weng, 2007; Strahler, 1980). The
newly developed non-parametric classifiers generally perform better
than the parametric classification methods (Huang et al., 2002),
because their non-parametric nature can overcome limitations of
multi-modal, noisy/missing data, and data with large and complex
measurement spaces. Moreover, the relative importance of input
variables can be investigated andmodified to improve performance of
specific land cover categories (Rogan et al., 2008). In spite of the
advancement made in remote sensing classification, land cover map
accuracy tends to be lower in urban environments relative to forest/
grassland environments (Rogan& Chen, 2004). To improve urban land
cover classification accuracy further, the largest benefits are likely to
come from improving the inputs to the classifiers, rather than
improving the classification algorithms.

Inputs from optical sensors are widely used in land cover
classification due to the rich information content of the multispectral
data.Whilemost research has concentrated on the spectral dimension
of the optical data (Bischof, et al., 1992; Bruzzone et al., 2006; Huang
et al., 2002; Shimabukuro & Smith, 1991; Strahler, 1980;Wang, 1990),
the temporal and spatial dimensions are addressed much less (Rogan
& Chen, 2004). Temporal information has proven beneficial for
improving classification accuracy, especially for vegetation, because
of the differences in phenology associated with different vegetation
types (Defries & Townshend, 1994; Friedl et al., 2010; Gopal et al.,
1999; Guerschman et al., 2003; Hansen et al., 2000; Tucker et al.,
1985; Wolter et al., 1995). Multitemporal data are one of the main
inputs for large area land cover map products derived from the
Advanced Very High Resolution Radiometer (AVHRR) and Moderate
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Resolution Imaging Spectroradiometer (MODIS) sensors (Friedl et al.,
2010; Gopal et al., 1999; Hansen et al., 2000; Tucker et al., 1985).
Defries and Townshend (1994) used the monthly NDVI values in
global land cover mapping with AVHRR data. Wolter et al. (1995)
reported a significant improvement when multitemporal Landsat
Thematic Mapper (TM) images were used to map forest types in the
northern lake states. Guerschman et al. (2003) explored how many
dates, and the best combinations of Landsat TM images needed to
obtain accurate land cover map in the Argentine Pampas.

The spatial dimension of remote sensing images as measured by
image texture contains information on local spatial structure and
variability of land cover categories, and can increase land cover
classification accuracies in heterogeneous landscapes (Ghimire et al.,
2010). Texture information has improved classification accuracy for
optical sensors such as the Satellite Pour l'Observation de la Terre
(SPOT) High Resolution Visible (HRV) sensor (Franklin & Peddle,
1990; Steven & Derek, 1990), Landsat TM (Chica-Olmo & Abarca-
Hernandez, 2000), Multispectral Electro optical Imaging Scanner
(MEIS-II) (Anys et al., 1994), and airborne multispectral sensors
(Franklin, et al., 2000). The optimal window size for texture
measurements is highly dependent on the image spatial resolution
and the land cover characteristics (Pesaresi, 2000). Generally, window
size should be large enough to include the entire texture pattern, and
at the same time small enough to include only one land cover type
(Dell'Acqua & Gamba, 2006; Pesaresi, 2000; Puissant et al., 2005).
Shaban and Dikshit (2001) computed texture measurements with
different window sizes as inputs for urban area classification using
SPOT HRV. They suggested window sizes of 7×7 and 9×9 pixels
performs best and beyond this the accuracy may slightly increase or
decrease but the difference is not statistically significant.

Synthetic Aperture Radar (SAR) sensors are playing an increas-
ingly important role in remote sensing due to their ability to operate
day and night through cloud cover, and recent improvement in data
availability (Rogan & Chen, 2004). Many studies have focused on the
spectral and polarimetric dimensions of SAR data in land cover
classification (Chen et al., 2003; Cloude & Potter, 1997; Lee, et al.,
1994), whereas SAR image texture is found helpful in improving map
accuracy, particularly for urban and forest categories (Dekker, 2003).
The textures offered by SAR images are more appealing considering
the inherent speckle noise that makes single pixel value unreliable.
Though SAR images have long been limited in their use for urban
characterization due to their sensitivity to clustered and irregular
urban structures, SAR texture measures can provide valuable
information (Dekker, 2003; Dell'Acqua & Gamba, 2003). The isolated
scattering residential areas are quite different from town centers with
lots of crowded backscatters or financial areas, where some of the
high buildings cause peaks in SAR response (Dell'Acqua & Gamba,
2006). Simard et al. (2000) found texture measures from Japanese
Earth Resources Satellite-1 (JERS-1) are important features for the
differentiation of flooded vegetation in Central Africa. Ulaby et al.
(1986) reported the use of SAR texture information (8×8 pixels
suggested as the optimal window size) improved overall land cover
accuracy with Seasat SAR data acquired over northeastern Oklahoma
and provided better mapping of forest types with Shuttle Imaging
Radar-A (SIR-A) SAR data acquired over forested areas in North and
South America. Additionally, multitemporal SAR images have also
proven useful in urban, forest, and agriculture land cover classification
(Le Toan et al., 1989; Pellizzeri et al., 2003; Quegan et al., 2000;
Schotten et al., 1995).

Recent studies report that the integration of optical and SAR data
might be beneficial due to their distinct features. Optical images contain
information on surface reflectance and emissivity characteristics, while
SAR images capture the structure and dielectric properties of the Earth
surface materials. Land cover types that are impossible to separate in
optical imagesmight be distinguishable with SAR images and vice versa
because of the complementary information contained in the two
datasets (Amarsaikhan & Douglas, 2004). Many approaches employing
both optical and SAR images have been explored for land cover
classification (Amarsaikhan & Douglas, 2004; Blaes et al., 2005; Chust
et al., 2004; Corbane et al., 2008; Kuplich et al., 2000; Michelson et al.,
2000; Rott, 1994; Shupe &Marsh, 2004; Solberg et al., 1994; Toll, 1985).
The results from integrating optical and SAR sensors are always
significantly higher than those obtained from using an individual
sensor, particularly for certain land cover types, such as urban (Corbane
et al., 2008; Toll, 1985), agriculture (Blaes et al., 2005; Chust et al., 2004),
wetlands (Augusteijin &Warrender, 1998; Li & Chen, 2005), and desert
vegetation (Shupe & Marsh, 2004).

The objective of this study is to quantify the importance of the
different dimensions (spectral, polarimetric, temporal, and spatial) of
the input data, and the best accuracy achievable by combining optical
and SAR sensors in urban and peri-urban land cover classification. We
first explored the importance of the polarimetric and spatial dimensions
provided by PALSAR images alone. Then, the contributions of the
spectral, temporal, and spatial dimensions in Landsat were assessed.
Finally,we integratedboth Landsat andALOSdata to create thebest land
cover map with all the available dimensions and analyzed the
importance of the variables from the different dimensions.

2. Data and study area

2.1. Study area

The study area is located in Eastern Massachusetts (Fig. 1) and
covers 12,404 km2. Approximately half of the study area is dominated
by mixed temperate forest consisting of broadleaf deciduous trees
(e.g., red maple-Acer Rubrum, sugar maple-Acer Saccharum, beech-
Fagus, and oak-Quercus), as well as white pine-Pinus strobus and
eastern hemlock-Tsuga canadensis. The non-forested portion of the
study area is largely composed of agricultural and urban land uses.
The study area has a subtle elevation gradient ranging from sea level
in the east to 500 m in the west. The climate is mild with an average
annual temperature of 8.8 °C. Average annual precipitation for the
study area is 115–130 cm (NCDA, 2008) and the dominant soil type is
coarse sandy loam.

The dominant land change in the last 20 years has been forest loss
due to urban sprawl (DeNormandie, 2009), a commonpattern of forest
loss across North America (Butler, 2008; Nowak & Walton, 2005).
Recent estimates suggest that Massachusetts loses roughly 16 ha of
forest per day due to urban sprawl, which is concentrated primarily in
Southeastern Massachusetts and along the Interstate Highway 495
corridor (Breunig, 2003; Davis, 2007; DeNormandie, 2009). These
diverse land covers provide a good opportunity to test the value of
different remote sensing inputs to land cover classification.

2.2. Landsat data

Four Landsat ETM+(Path 12 Row 31) images from different
seasons prior to the Scan Line Corrector (SLC) failure were chosen as
the optical input data. The Landsat image classified first was captured
on September 27th 2000 (autumn). Next, three images from other
seasons (a winter image from December 3rd 2001, a spring image
from April 10th 2002, and a summer image from June 29th 2002)
were added in sequence to test the effect of multitemporal inputs. To
reduce the effect of the atmosphere, the raw DN values were
converted to surface reflectance (Fig. 2a) with the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) atmosphere
correction tool (Masek et al., 2006; Vermote et al., 1997).This
atmosphere correction algorithm uses theMODIS 6S radiative transfer
approach in retrieving surface reflectance. The thermal band was
converted to brightness temperature and resampled to 30 m. Cloud
and cloud shadows (less than 1% of the each scene) were masked
using an object based method (Zhu & Woodcock, submitted for



Fig. 1. Study area.
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publication). Pixels that had clouds or shadows in any of the Landsat
images were excluded from further analysis.

2.3. PALSAR data

The L-band ALOS PALSAR data (Rosenqvist et al., 2007) used in this
study were acquired in the Fine Beam Dual (FBD) mode, i.e., dual
polarization HH (horizontal-horizontal) and HV (horizontal-vertical),
with an incidence angle of 39 degrees and a pixel spacing of 9.4 m (slant
range) by 3.2 m (azimuth). The data were acquired from the American
ALOSDataNodeat theAlaskaSatellite Facility (ASF-AADN)andprocessed
with the Woods Hole Image Processing System (WHIPS). Processing
steps were (1) multi-looking Single Look Complex Data converted to
4 look multi-look detected data; (2) application of a Gamma MAP
speckle filter in slant range format (Baraldi & Panniggiani, 1995);
(3) orthorectifictaion and local incidence angle correction during
geocoding (Kellndorfer et al., 1998; SARScape User Manual, 2009); and
(4) conversion of power data to 8bit dB units to generate a three-band
composite of L-bandHH, LHV, and the ratio ofHH/HV.A total of nineALOS
PALSAR scenes acquired between June and July 2007 were mosaicked.
The final mosaic was a 24-bit GeoTIFF image with a pixel resolution of
15 m in Albers Equal Area Projection. For integration with the Landsat
data in this study, the PALSAR data were reprojected to the UTM
coordinate system(WGS84datum)and resampled to 30 musingnearest
neighbor interpolation. Two kinds of PALSAR images were used here —

the unfiltered (without the speckle filter) and the filtered versions. To
better preserve the texture of the PALSAR images, we used the unfiltered
PALSAR images (Fig. 2b) for texture computing, and used the filtered
version of the images (Fig. 2c) directly for land cover classification.

2.4. Ground reference data

Ground data were previously used to calibrate the HERO Massachu-
setts Forest Monitoring Program (MaFoMP) 2000 land cover product
(Rogan et al., 2010). Ground data were created with the aid of aerial
photographs and fieldwork from 2005 to 2007. Orthorectified true color
aerial photographs representing leaf-off conditions in April 2005 were
acquired fromMassGIS (2009). These datawere captured by Sanborn LLC
using aVexcelUltracamdigital cameraat analtitudeof1545 mandhavea
spatial resolution of approximately 45 cm. All ground data were
60×60m in dimension, and were distributed throughout the study
region to capture variation in reflectance values across the study area.
There are 17 land cover categories with a total of 10,502 reference
locations in Massachusetts (Table 1 and Fig. 3). A total of 5,485 reference
locations are in the study area.

3. Methods

3.1. Classifier

A Random Forest Classifier (RFC) was used to create land cover maps
of the studyarea and test the influence of different input variables onmap
accuracy. The term random in RFC signifies random selection of a certain
proportion of training data as well as random selection of a user defined
numberof splittingvariables and the term forests implies that a collection
of trees are generated using the algorithm. The RFC is a non-parametric
classifier that uses an ensemble of tree based classifiers {h (x, Θk), k=1,
…} where x is the input vector and Θk are the independent identically
distributed random vectors (Breiman, 2001). A large number of
classification trees can be generated using bootstrap samples with
replacement from the training data. Pixels are assigned to each class
based on a majority voting rule which assigns a pixel to the class that
receives the maximum number of votes from the group of classification
trees. For example, suppose there are two classes A and B and out of 100
classification trees built, 60 trees classify a pixel as class A and 40 trees
classify that same pixel as B. In this case the pixel is assigned to class A as
more trees predict category A. Each tree is trained using a certain
percentage of randomly selected training samples with the remaining



b) Urban area unfiltered PALSAR image (HH, HV, and HH/HV)

c) Urban area filtered PALSAR image (HH, HV, and HH/HV)

a) Urban area Landsat ETM+ image (Band 4, 3, and 2)

Fig. 2.

Table 1
17-categories land cover description.

Class Description

Orchards Managed plantation of fruit trees, primarily apples
Cranberry bogs Managed bog containing cranberry bushes, seasonally

flooded
Pasture/row crops Open and cultivated agricultural grasslands
Deciduous forest Forested land≥80% broadleaved deciduous canopy cover
Conifer forest Forested land≥80% needleleaved evergreen canopy cover
Mixed forest Forest landN20% conifer and b80% deciduous canopy cover
Golf course Highly managed open grasslands
Grassland Grassland dominated open spaces
Low density residential Residential land with equal parts impervious surface

and vegetation
High density residential Residential land minimally vegetated, N60% impervious

surface
Commercial/industrial Impervious surface
Deep water Standing deep water presentN11 months
Shallow water Standing shallow water presentN11 months
Wetland Vegetated lands with a high water table
Salt marsh Tidal saltwater rivers/mudflats and surrounding

herbaceous cover
Sand quarry Sand and gravel mining pits
Bare soil Bare land sparsely vegetated, N60% soil background
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percentage of training samples, called “out-of-bag” samples, serving to
estimate the classification accuracy. In addition, the best split at each
node can be obtained by a user defined fixed number of feature variables
that can be randomly selected from the group of feature variables.

The RFC has the advantages inherent to classification trees because
it uses classification trees as the base classifier (Breiman, 2001). In
addition, the RFC is easy to use and operate because only two input
parameters have to be adjusted (i.e., the number of trees and number
of split variables at each node). Optimal results can be obtained by
selecting the number of trees and the number of split variables that
provide the smallest out-of-bag error rate. Usually, the larger the
number of trees, the higher the accuracy, and the upper limit of trees
depends on the computation time. The default value for the number of
split variables is the square root of the total number of variables, and
its “optimal” range is usually quite wide. Furthermore, the results
from RFC are not hampered by the problem of overfitting because the
large number of trees generated ensures generalization of the
patterns in the data (Breiman, 2001). RFC has been used in applica-
tions related to land cover classification (Gislason et al., 2006; Ham et
al., 2005; Pal, 2005) and landscape ecology (Prasad et al., 2006). In this
study, a total of 500 trees were grown for each classification scenario,
and the square root of the number of total input variables were used
as the number of split variables at the nodes.
Variable importance was estimated by the difference in prediction
accuracies between the permuted and original out-of-bag samples
(Breiman, 2001). Although the structure of a classification tree contains
information about every important variable, this kindof interpretation is
impossible for RFC which utilizes hundreds of trees in an ensemble. To
estimate the importance of the mth variable, the out-of-bag samples of
the mth variable are randomly permuted first (breaking the predictor
variable's original associationwith response Y). Next, the permuted out-
of-bag samples are run through all the Random Forest trees again.
Finally, the variable importance is computed by averaging the difference
in accuracies between the original and thepermuted out-of-bag samples
for all the trees. The merit of the Random Forest variable importance
measure compared to univariate screening methods is that it not only
includes the influence of each predictor variable separately but also the
multivariate interactionswith otherpredictor variables,whichmake this
advanced approach more efficient and accurate (Breiman, 2001;
Gislason et al., 2006; Chan & Paelinckx, 2008; Archer & Kimes, 2008).
3.2. Maps accuracy evaluation

We performed a fifty-fold cross-validation analysis with the
training database. A total of 80% of the ground reference data were
randomly selected to train the classifier, and the remaining 20% were
used to assess map accuracy (Fielding & Bell, 1997). This process was
repeated 50 times and we use the average overall classification
accuracy to compare the results for different combinations of input
data. The confusion matrices, producer's accuracy, and user's accuracy
were calculated using the remaining 20% for three scenarios (Scenario
2, 7, and 8 in Table 2).To quantitatively evaluate the efficiencies in
classification accuracies, a Paired t-test was performed. For each
classification scenario there are fifty map accuracy results, and the
Paired t-test of the accuracies tests whether the observed increase in
the mean overall accuracy is statistically significant (at the 95% level).
4. Results

4.1. Inputs from PALSAR

We explored the polarimetric and spatial dimensions of the SAR
data. The use of the L-band dual polarization (HH and HV) PALSAR

image of Fig.�2


Fig. 3. 17-categories land cover reference map of Massachusetts.
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images (Scenario 1 in Table 2) resulted in low overall land cover
mapping accuracy (30.99% in Fig. 4).

In the spatial dimension, eight texture variables (9×9 pixels
window size) for HH and HV bands were created using Grey-Level Co-
occurrence Matrix (GLCM) measures (Franklin & Peddle, 1990; Gong
& Howarth, 1992), including the mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation (Lu
& Batistella, 2005). The overall map accuracy increased to 72.44%
when the texture data were combined with the dual polarization
bands (Scenario 2 in Table 2). Results of the Paired t-test indicated
that this improvement was statistically significant at the 95% level.

The confusion matrix for the land cover classification derived from
PALSAR polarimetric and spatial dimensions is presented in Table 3.
Three urban land cover categories (high density residential, low density
Table 2
Different scenarios of input variables for land cover classification.

Scenario
number

Number of
variables

Name of variables

1 2 HH and HV PALSAR
2 18 HH, HV, HH textures, and HV textures PALSAR
3 7 Autumn Landsat
4 13 Autumn and winter Landsat
5 19 Autumn, winter and spring Landsat
6 25 Autumn, winter, spring and summer Landsat
7 73 Four seasons Landsat and autumn Landsat textures
8 91 HH, HV, HH texture, HV texture, four seasons Landsat

and autumn Landsat textures
residential, and commercial/industrial) exhibited different map accu-
racies. Relatively high producer's (80.83%) and user's (74.68%)
accuracies were observed for high density residential, while the
producer's and user's accuracies for low density residential and
commercial/industrial were below average (approximately 70% or
less). The confusion matrix also illustrated the value of PALSAR data
for distinguishing forest types. The producer's and user's accuracies
for deciduous forest, conifer forest, andmixed forestwere all higher than
70%. High producer's accuracy and user's accuracies (approximately
80% or higher) were achieved for deep water and salt marsh. The
producer's accuracies for cranberry bogs, pasture/row crops, and golf
course were approximately 60% or lower suggesting significant
omission error for these three land cover types. The user's accuracies
for sand quarry and bare soil were less than 60%, meaning large
commission error in these land cover types. The land cover map
derived from the PALSAR polarimetric and spatial dimensions
(Scenario 2 in Table 2) exhibited many problems (Fig. 4a). Large areas
of shallowwater (Charles River and Boston bay area) were misclassified
as bare soil. The Low density residential classwas frequentlymisclassified
as conifer forest and mixed forest. Commercial/industrial was sometimes
misclassified as high density residential in downtown Boston. Moreover,
deciduous forest tended to be falsely identified as conifer forest andmixed
forest.

4.2. Inputs from Landsat

All seven spectral bands (including the thermal band) in the
autumn (September) Landsat image were used to explore the spectral
dimension (Scenario 3 in Table 2). The overall classification accuracy



Fig. 4. Overall classification accuracies with different inputs (refers to Table 2).
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from this single-date Landsat image (77.96%) was more than 5%
higher than the best accuracy (including texture variables) obtained
using PALSAR data (Fig. 4).

Three additional Landsat images from different seasons were
combined to explore the temporal dimension (Fig. 4 and Scenario 4–6
in Table 2). We only added the multitemporal visible, near-infrared
(NIR), and Short Wave Infrared (SWIR) bands for land cover
classification. The thermal bands from the other three seasons were
not included here because multitemporal thermal bands did not
improve classification results. The Paired t-test indicated that adding
multitemporal thermal bands did not increase classification accuracy
at the 95% significance level. In general, there is not much information
contained in multitemporal thermal data as temporal changes are
mostly the result of seasonality, which is common to all land covers.
Winter (December), spring (April), and summer (June) Landsat
images were added sequentially to the original Landsat autumn
Table 3
Confusion matrix for 17-categories land cover classification derived from PALSAR dual pola

O CB PC DF CF MF GC G LD H

O 1573 23 162 1 13 4 22 37 14 0
CB 16 1592 152 0 0 0 70 44 0 0
PC 160 182 2388 16 0 7 95 110 74 0
DF 1 0 3 2746 102 740 0 5 78 2
CF 14 0 8 96 3054 615 0 0 67 32
MF 1 13 32 362 339 4569 0 10 88 0
GC 34 58 175 0 0 1 1822 111 32 4
G 22 119 187 13 0 7 174 2217 70 13
LD 23 0 20 66 136 143 4 45 2153 18
HD 1 0 0 7 90 0 8 0 238 1,
CI 79 0 94 29 30 16 152 249 154 70
DW 0 6 30 0 0 5 40 104 0 0
SW 5 56 46 0 2 0 73 108 32 0
W 100 61 70 94 39 129 73 36 146 0
SM 35 118 89 0 0 0 64 36 0 0
SQ 53 185 132 8 11 0 126 110 0 5
BS 10 278 195 0 0 0 108 122 2 0
Tot. 2127 2691 3783 3438 3816 6236 2831 3344 3148 16
Prod 73.95 59.16 63.12 79.87 80.03 73.26 64.35 66.29 68.39 80

Note: O=Orchards, CB=Cranberry Bogs, PC=Pasture/Row Crops, DF=Deciduous Fores
Density Residential, HD=High Density Residential, CI=Commercial/Industrial, DW=De
BS=Bare Soil.
(September) image. An approximate 7% increase in map accuracy
(map overall accuracy of 86.86%) was achieved by using Landsat
images from all four seasons. The largest increase in overall accuracy
was achieved through the addition of a snow free winter (December)
image to the autumn (September) image. Paired t-test suggested that
each scenario was statistically significant different from the previous
scenario at the 95% level.

For each spectral band (except the thermal band) of the autumn
(September) Landsat image, eight texture variables (9×9 window)
were calculated using GLCM measures to test the value of the spatial
dimension (Scenario 7 in Table 2). The window size for calculating the
texture variables was 9×9 pixels. The addition of the spatial dimen-
sion resulted in an almost 6% increase in overall accuracy. By using all
the available dimensions of Landsat data (spectral, temporal, and
spatial), the best land cover map obtained an overall accuracy of
92.69%. Paired t-tests between this accuracy and the accuracy derived
rization bands and their texture measures.

D CI DW SW W SM SQ BS Tot. User

70 0 9 161 52 57 6 2204 71.37
18 13 33 9 63 86 48 2144 74.25
67 33 148 48 111 57 66 3562 67.04
8 0 0 79 0 19 0 3783 72.59
2 0 0 5 0 8 0 3901 78.29
12 0 0 29 0 0 0 5455 83.76
210 26 108 55 0 76 33 2745 66.38
196 40 93 46 54 97 59 3407 65.07

8 131 0 0 186 0 0 1 3096 69.54
324 69 0 0 11 0 25 0 1,773 74.68

2353 40 44 97 22 63 39 3531 66.64
18 3572 442 0 0 10 30 4257 83.91
60 646 2,371 17 1 38 59 3,514 67.47
42 2 48 2272 1 31 22 3166 71.76
22 0 14 8 2722 41 19 3168 85.92
135 13 45 72 69 1,662 115 2,741 60.63
59 104 107 36 84 115 1183 2403 49.23

38 3472 4489 3462 3131 3179 2385 1680 54,850
.83 67.77 79.57 68.48 72.56 85.62 69.69 70.42 72.15

t, CF=Conifer Forest, MF=Mixed Forest, GC=Golf Course, G=Grassland, LD=Low
ep Water, SW=Shallow Water, W=Wetland, SM=Salt Marsh, SQ=Sand Quarry,

image of Fig.�4


a) Urban area land cover map from PALSAR (Scenario 2)

b) Urban area land cover map from Landsat (Scenario7)
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from using spectral and temporal (four seasons) dimensions of
Landsat data indicate this increase is statistically significant at the 95%
level.

Landsat data alone provided high accuracy for all 17 land cover
categories when all the available spectral, temporal, and spatial
dimensions were used. The producer's and user's accuracies for all
land cover typeswere approximately 90% or higher (Table 4). The three
urban land cover classes performed differently, with the highest
producer's and user's accuracies in high density residential (N90%),
moderate producer's and user's accuracies in commercial/industrial
(approximate 90%), and relatively low producer's and user's accuracies
in low density residential (b90%). Compared with the other non-urban
land cover classes, the produce's and user's accuracies of the three urban
land cover types were slightly lower, except the producer's accuracy for
high density residential. The producer's and user's accuracies for
cranberry bogs, deep water, and shallow water were very high (N95%).
The best map derived from Landsat (Scenario 7 in Table 2) in the urban
areas also showed a high degree of accuracy (Fig. 5b). Shallowwaterwas
correctly identified in the map. Low density residential was labeled
accurately without showing any confusion with conifer forest andmixed
forest. Deciduous forestwas accurately separated from conifer forest and
mixed forest. Commercial/industrialwaswell identified from high density
residential in downtown Boston. The patch shapes of forest, residential,
water, and golf course classes matched landscape features. Nonetheless,
the three urban land cover types (commercial/industrial, high density
residential, and low density residential) still have problems in this map.
Commercial/industrial and high density residential located in downtown
Boston were misclassified as wetland, water, and sand quarry. Many of
the low density residential sites along Charles River were falsely labeled
as wetland or salt marsh.
c) Urban land cover map from PALSAR and Landsat combined (Scenario 8)

Fig. 5.
4.3. Inputs from PALSAR and Landsat

By combining PALSAR and Landsat, four dimensions of inputs are
used (Scenario 8 in Table 2). In the spectral dimension, Landsat and
PALSARprovides the visible, NIR, SWIR, thermal, andmicrowave L-band.
In the polarimetric dimension, PALSARprovides dual polarization bands.
The temporal dimension is provided by the four seasons of Landsat
images. The spatial dimension is captured by the eight texture variables
calculated for each spectral band from the autumn (September) Landsat
image and the PALSAR image with a window size of 9×9 pixels.
Table 4
Confusion matrix for 17-categories land cover classification derived from 4 seasons Landsat images and texture measures.

O CB PC DF CF MF GC G LD HD CI DW SW W SM SQ BS Tot. User

O 2015 0 134 0 0 0 8 44 10 0 14 0 0 0 0 0 1 2226 90.52
CB 0 2182 6 0 1 10 0 31 30 0 1 0 0 3 0 0 3 2267 96.25
PC 91 1 3264 0 11 0 25 46 47 0 0 0 0 16 0 0 36 3537 92.28
DF 0 0 0 3561 0 138 0 0 7 0 0 0 0 8 0 0 2 3716 95.82
CF 0 5 0 25 3541 318 0 0 10 0 0 0 0 6 0 0 0 3905 90.68
MF 0 0 0 234 294 4923 0 0 8 0 0 0 0 7 0 0 0 5466 90.07
GC 44 15 35 3 17 3 2525 56 8 0 0 0 3 0 0 0 0 2709 93.21
G 18 21 70 9 0 0 46 3190 47 12 0 0 0 2 0 0 32 3447 92.54
LD 6 1 2 29 0 43 0 10 2768 59 66 11 18 32 18 1 30 3094 89.46
HD 0 0 0 0 0 0 0 0 51 1619 78 0 0 0 1 22 0 1771 91.42
CI 0 0 0 0 0 44 0 26 86 18 3335 0 0 0 0 120 53 3682 90.58
DW 0 0 0 0 0 0 0 0 0 0 0 4184 156 0 0 0 0 4340 96.41
SW 0 0 0 0 8 9 0 0 0 0 0 186 3203 48 7 0 13 3474 92.20
W 0 0 11 18 0 36 0 0 21 0 3 0 68 2963 10 0 17 3147 94.15
SM 0 0 0 0 0 9 0 0 0 0 7 0 14 62 2928 0 7 3027 96.73
SQ 0 0 0 0 0 0 0 5 0 0 55 0 0 8 1 2526 52 2647 95.43
BS 0 0 83 0 3 18 0 11 32 0 57 0 0 22 0 57 2112 2395 88.18
Tot. 2174 2225 3605 3879 3875 5551 2604 3419 3125 1708 3616 4381 3462 3177 2965 2726 2358 54850
Prod 92.69 98.07 90.54 91.80 91.38 88.69 96.97 93.30 88.58 94.79 92.23 95.50 92.52 93.26 98.75 92.66 89.57 92.69

Note: O=Orchards, CB=Cranberry Bogs, PC=Pasture/Row Crops, DF=Deciduous Forest, CF=Conifer Forest, MF=Mixed Forest, GC=Golf Course, G=Grassland, LD=Low
Density Residential, HD=High Density Residential, CI=Commercial/Industrial, DW=Deep Water, SW=Shallow Water, W=Wetland, SM=Salt Marsh, SQ=Sand Quarry,
BS=Bare Soil.



Fig. 6. Difference between urban area land covermaps derived from Landsat (Scenario 7),
and integration of ALOS and Landsat (Scenario 8).

79Z. Zhu et al. / Remote Sensing of Environment 117 (2012) 72–82
Using all the dimensions available provided by PALSAR and
Landsat data, the map accuracy was 93.82% (Fig. 4). Compared with
the best classification map from Landsat data, the 1.1% map accuracy
increase appears small, but it is statistically significant at the 95% level.
There remains only a little more than 6% error after the use of Landsat
data, and the addition of PALSAR data helps resolve approximately
15% of the extant error. The producer's and user's accuracies for all 17
land cover types were higher than 90% (Table 5). PALSAR data were
particularly helpful in urban land cover type classification when
combined with Landsat data. Except for the producer's accuracy for
high density residential, the producer's and user's accuracy for low
density residential, high density residential, and commercial/industrial
all increased approximately 2.3–4.6% when PALSAR and Landsat were
combined compared to Landsat alone. The inclusion of PALSAR data
decreased the producer's accuracy for high density residential by 0.3%
which is reasonable considering the high producer's accuracy (94.8%)
already achieved with Landsat data and the inherent noise in PALSAR
data. There were slight increases in producer's and user's accuracies
for other non-urban land cover, but the magnitude was very small
(Tables 4 and 5). Comparing the land cover map derived from
integration of Landsat and PALSAR (Fig. 5c) and the one obtained from
Landsat alone (Fig. 5b) in the urban area, we found the basic pattern
for the two land cover maps were very similar. The most obvious
differences between the two maps were located in the boundary of
different land cover types andwithin the three urban land cover types
(Fig. 6). The differences in the urban land cover types showed the
special contribution from PALSAR data. The low density residential
pixels located along Charles River that had been previously mis-
identified as wetland and salt marsh were correctly classified as low
and high density residential. The confusion betweenwater and building
shadows were greatly reduced. The misclassified sand quarry in
downtown Boston was also eliminated in the map derived from both
Landsat and PALSAR data.
4.4. Importance of the variables

By combining the spectral, polarimetric, temporal, and spatial
dimensions of the input data, there are 91 variables for each pixel
(Scenario 8 in Table 2). The first twenty-five variables are the four
seasons of Landsat images in which the Landsat bands are in the
sequence of Band 1, Band 2, Band 3, Band 4, Band 5, and Band 7 (Band
6 only from autumn image). The next two variables are the HH andHV
Table 5
Confusion matrix for 17-categories land cover classification derived from combination of La

O CB PC DF CF MF GC G LD H

O 2075 0 103 0 0 0 11 43 10 0
CB 0 2181 7 0 0 8 0 43 9 0
PC 108 0 3261 0 7 0 22 54 51 0
DF 0 0 0 3582 0 96 0 0 7 0
CF 0 1 0 13 3524 316 0 0 8 0
MF 0 0 0 172 314 5029 0 0 8 0
GC 17 9 49 17 11 1 2617 40 17 0
G 29 19 99 18 0 0 51 3082 43 1
LD 6 0 0 16 16 35 0 3 2930 8
HD 0 0 0 0 0 0 0 0 21 1
CI 0 0 0 0 0 25 0 15 73 5
DW 0 0 0 0 0 0 0 0 0 0
SW 0 0 0 0 3 12 0 0 0 0
W 1 0 2 7 0 32 0 0 7 0
SM 0 0 0 0 0 11 0 0 0 0
SQ 0 0 0 0 0 2 0 2 0 0
BS 0 0 87 0 0 18 0 12 0 0
Tot. 2236 2210 3608 3825 3875 5585 2701 3294 3184 1
Prod 92.80 98.69 90.38 93.65 90.94 90.04 96.89 93.56 92.02 9

Note: O=Orchards, CB=Cranberry Bogs, PC=Pasture/Row Crops, DF=Deciduous Fores
Density Residential, HD=High Density Residential, CI=Commercial/Industrial, DW=De
BS=Bare Soil.
polarization bands from PALSAR. The last sixty-four variables are the
eight texture variables computed from each PALSAR (HH and HV) and
Landsat spectral bands (six optical bands). The texture variables for
each spectral band are in the sequence of mean, variance, homoge-
neity, contrast, dissimilarity, entropy, second moment, and correla-
tion. The importance of the 91 variables is presented in Fig. 7. Except
for the summer (June) image, the NIR band is themost beneficial band
in land cover classification, and it works best in the autumn
(September) image. The PALSAR HH and HV bands are also helpful,
especially the HV band. On the other hand, the most useful variable in
the eight texture variables for both PALSAR and Landsat is the mean
value for each spectral band at the window size of 9×9 pixels.

Ideally, each variable used in the classification should provide extra
information to the dataset and improve map accuracy. Nevertheless,
high correlations between the variables, noise from misregistration of
the multi-source data, and the necessity of more parameters to be
estimated in the classifier undermine classification accuracy when
many variables from different sources are used. Beyond a certain point,
the inclusion of more variables may lead to reduced map accuracy, due
to the limited number of training samples (Pal, 2006). Therefore,
selecting the optimal subset of variables may reduce the computation
and at the same time improve the classification accuracy (Chan &
Paelinckx, 2008; Pal, 2006; Waske et al., 2010).

We performed a backward elimination technique, that is, iteratively
removing the least important variable (importance of each variable is
ndsat and ALOS data.

D CI DW SW W SM SQ BS Tot. User

3 0 0 0 0 2 0 2247 92.35
0 0 0 2 2 0 9 2261 96.46
0 0 0 17 0 0 27 3547 91.94
0 0 0 7 0 0 0 3692 97.02
0 0 0 8 0 0 0 3870 91.06
0 0 0 7 0 0 0 5530 90.94
9 0 5 2 0 0 0 2794 93.66

0 0 0 0 1 8 0 27 3387 90.99
1 41 13 25 5 3 0 20 3194 91.73
645 33 0 0 0 0 15 0 1714 95.97

3344 0 0 1 0 57 32 3552 94.14
0 4193 141 0 0 0 0 4334 96.75
0 185 3249 29 4 0 10 3492 93.04
7 0 58 2940 1 0 4 3059 96.11
0 0 12 8 3118 0 7 3156 98.80
33 0 0 16 0 2535 52 2640 96.02
30 0 0 25 0 56 2153 2381 90.42

741 3500 4391 3490 3068 3136 2665 2341 54850
4.49 95.54 95.49 93.09 95.83 99.43 95.12 91.97 93.82

t, CF=Conifer Forest, MF=Mixed Forest, GC=Golf Course, G=Grassland, LD=Low
ep Water, SW=Shallow Water, W=Wetland, SM=Salt Marsh, SQ=Sand Quarry,



Different input variables

M
ea

n 
de

cr
ea

se
 in

 a
cc

ur
ac

ie
s

0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

10 20 30 40 50 60 70 80 91

Fig. 7. Importance of the 91 different input variables from all available dimensions by combing Landsat and PALSAR data.
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reevaluated at each iteration) and calculating the overall map accuracy
using the remaining variables (Fig. 8). The overall accuracies decreased
very slightly when removing the first 81 least important variables.
Overall accuracies started to decrease quickly when there are only
15 variables left. In Fig. 8, the most important 15 variables are removed
in the order of mean Band 3 (autumn Landsat texture), mean Band
4 (autumn Landsat texture), Band 2 (summer Landsat), Band 7 (spring
Landsat), Band 3 (summer Landsat), Band 4 (spring Landsat), Band
2 (spring Landsat), HV polarization, Band 2 (autumn Landsat), Band
5 (winter Landsat), Band 5 (summer Landsat), Band 3 (summer
Landsat), Band 4 (autumn Landsat), Band 3 (autumn Landsat), and
Band 5 (autumn Landsat).

5. Discussion and conclusions

We evaluated the importance of different dimensions of the input
data and the strengths of different sensors in urban and peri-urban land
cover classification.When using PALSAR data only, the dual polarization
bands resulted in low classification accuracy. By adding the spatial
dimension of PALSAR data, overall classification accuracy improved
substantially. When using a single Landsat image from autumn
(September), higher overall classification accuracy was observed. The
addition of the temporal dimension (four seasons of Landsat images)
and the spatial dimension further increased the overall classification
accuracy. By combining Landsat and PALSAR and using all available
dimensions, we achieved the highest overall classification accuracy.
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Fig. 8. Overall classification accuracies based on backward elimination of the least
important variable.
Though the addition of PALSAR only increased the overall accuracy by
1.1%, this improvement was mostly from better discrimination of the
three urban land cover types. If we only combine the spectral bands
fromPALSAR image and anautumn(September) Landsat image, there is
a 3% increase in overall accuracy compared with using the Landsat
image. Moreover, the PALSAR texture variables can add another 2.2% in
overall accuracy even after using multitemporal Landsat and the dual
polarization bands from PALSAR.

Thedifferent variables fromeachdimensionof thedata all contribute
to the improved classification accuracy (Fig. 8). Though some of the
variables contribute relatively little, the trend is straightforward: more
independent input data results in higher classification accuracy. In this
study, RFC showed its strong ability in classifying a dataset with many
variables (some of which may be highly correlated) without variable
deletion. For an advanced classifier like RFC, as long as the additional
variable can provide extra information, assuming the influence of noise
is relatively small, the classification accuracy should improve. The
spectral bands from the autumn (September) Landsat image are the
most important variables, which is probably due to the fact that it is the
time when deciduous and evergreen vegetation shows the greatest
difference. Due to the interchangeability of the cross polarization, HV
polarization is can provide unique information about surface features
which might be lost when using like polarizations (HH and VV)
(Sheoran et al., 2009). Noise from misregistration is always a big issue
when classifying multiple bands from different dates and different
sensors. The mean value computed from the texture variables can
reduce this problemand therefore increasesmapaccuracy.Note that the
overall accuracy achieved (89%) by using only 15 important variables is
significantly higher than scenario 6 (Table 2) which used 25 multi-
temporal Landsat spectral bands.

It is important to note that the reference classes are defined based on
a long history of land cover classification using Landsat. If a different
set of classes were used that are defined on the basis of surface
characteristics that more strongly influence radar data, such as physical
structure, then the relative importance of Landsat and PALSAR may
change.

In conclusion, including more dimensions of input data and more
sensors that complement each other improves urban and peri-urban
land cover classification accuracy. The spectral, polarimetric, tempo-
ral, and spatial dimensions all contribute to increased classification
accuracies. The additional temporal and spatial dimensions of Landsat
images are of great importance for improving classification accuracies
for all land cover types. The land cover map derived using only the dual
polarization L-band PALSAR data has low map accuracy. The spatial

image of Fig.�7
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dimension of the PALSAR image helps, but it is still less accurate than
simply using an autumn (September) Landsat image. The best
classification result is derived from the combination of Landsat and
PALSAR data using all available dimensions. The inclusion of PALSAR
with Landsat data improved the overall classification significantly by
1.1%, mostly improving the three urban land cover types (low density
residential, high density residentialand commercial/industrial). Selecting a
few (15 variables in this study) important variables from different
dimensions of input data can result in relatively high accuracy, but it is
still lower than using all available data.
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