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We developed a new algorithm called Tmask (multiTemporal mask) for automated masking of cloud, cloud
shadow, and snow for multitemporal Landsat images. This algorithm consists of two steps. The first step is
based on a single-date algorithm called Fmask (Function of mask) that initially screens most of the clouds,
cloud shadows, and snow. The second step benefits from the extra temporal information from the remaining
“clear” pixels and further improves the cloud, cloud shadow, and snow mask. Three Top Of Atmosphere (TOA)
reflectance bands (Bands 2, 4, and 5 — Landsat-7 band numbering) are used in a Robust Iteratively Reweighted
Least Squares (RIRLS) method to estimate a time series model for each pixel. By comparing model estimates
with Landsat observations for the three spectral bands, the Tmask algorithm is capable of detecting any
remaining clouds, cloud shadows, and snow for an entire stack of Landsat images. Generally, this algorithm
will not falsely identify land cover changes as clouds, cloud shadows, or snow, as it is capable of modeling land
cover change. The multitemporal images also provide extra information for better discrimination of cloud and
snow, which is difficult for single-date algorithm. A snow threshold is derived for Band 5 TOA reflectance for
each pixel at each specific time based on a modified Norwegian Linear Reflectance-to-Snow-Cover (NLR) algo-
rithm. By comparing the results of Tmaskwith a single-date algorithm (Fmask) formultitemporal Landsat images
located at Path 12 Row 31, significant improvements are observed for identification of clouds, cloud shadows,
and snow. The most significant improvement is observed for cloud shadow detection. Many of the errors in
cloud, cloud shadow, and snow detection observed in Fmask are corrected by the Tmask algorithm. The goal is
development of a cloud, cloud shadow, and snow detection algorithm that results in a multitemporal stack of
images that is free of “noise” factors and thus suitable for detection of land cover change.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Landsat data has been widely used in remote sensing because of
its medium spatial resolution (Woodcock & Strahler, 1987), accurate
radiometric calibration (Chander, Markham, & Helder, 2009), high geo-
metric precision (Lee, Storey, Choate, & Hayes, 2004; Masek, Honzak,
Goward, Liu, & Pak, 2001), and long historical record (Markham,
Storey, Williams, & Irons, 2004). The policy providing free access to
Landsat data has made Landsat data even more popular (Woodcock
et al., 2008) and has completely revolutionized the utilization of Landsat
data (Wulder, Masek, Cohen, Loveland, & Woodcock, 2012). Take
change detection as an example: previously, we detected land cover
change by comparing two dates of clear Landsat images (Collins &
Woodcock, 1996; Healey, Cohen, Yang, & Krankina, 2005; Masek et al.,
2008), but now algorithms use tens (Huang, Goward, et al., 2010;
Huang, Thomas, et al., 2010; Kennedy, Cohen, & Schroeder, 2007;
Vogelmann, Tolk, & Zhu, 2009; Zhu, Woodcock, & Olofsson, 2012) or
even hundreds (Zhu & Woodcock, 2014) of Landsat images at the
same location. In this new data rich era, many preprocessing methods
that require user input are no longer practical. One of themost immedi-
ate problems is cloud, cloud shadow, and snow detection in Landsat
images.

Clouds, their shadows, and snow significantly influence optical
sensors like Landsat (Dozier, 1989; Irish, Barker, Goward, & Arvidson,
2006; Zhu & Woodcock, 2012). The brightening effect of clouds and
snow and the darkening effect of cloud shadows significantly influence
the reflectance of different spectral bands. Screening of clouds, cloud
shadows, and snow is especially crucial for remote sensing activities
like change detection because undetected cloud, cloud shadow, or
snow will likely result in identification of change where none occurred
(“false positive errors”). Considering the relatively small areas of land
cover change, this type of error significantly decreases change detection
accuracy. Therefore, identification of clouds, cloud shadows, and snow is
usually the first step in most remote sensing activities, and for certain
applications like change detection, very accurate detection is required.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2014.06.012&domain=pdf
http://dx.doi.org/10.1016/j.rse.2014.06.012
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Fig. 1. Study area (Fig. 2 in Zhu & Woodcock, 2014).
The detection of clouds, cloud shadows, and snow is not always easy,
especially if we want to detect them accurately. Clouds are notoriously
difficult to detect in Landsat images, due to the limited Landsat spectral
bands and the complexity of clouds themselves (Zhu & Woodcock,
2012). Many types of clouds exist, and each kind may have a different
spectral signature based on cloud properties like cloudoptical thickness,
particle effective radius, thermodynamic phase, and cloud height
(Platnick et al., 2003). Moreover the spectral signature of optically thin
clouds can be very similar to the signature of the Earth surfaces under-
neath, making them more difficult to separate from clear observations.
Cloud shadow detection can be difficult as well due to the spectral
similarity of cloud shadows to dark surfaces. Thin cloud shadows are
even more difficult to detect, as their spectral signature can be almost
the same as clear pixels due to the penetration of solar radiation.
Snowdetection is usually considered relatively easier as theNormalized
Difference Snow Index (NDSI) is very helpful for snow detection
(Salomonson & Appel, 2004). However, the NDSI values of snow pixels
can also change significantly depending on the grain size, the thickness
of snowpack, and the amount of impurities (Warren &Wiscombe, 1980;
Wiscombe & Warren, 1980). Moreover, most of snow-covered surfaces
are actually a mixture of snow and other land cover types. In forested
areas, snow is mixed with trees, and the NDSI values of these pixels
are much lower than pure snow pixels (Klein, Hall, & Riggs, 1998;
Xin et al., 2012). Additionally, snow and clouds can be very difficult to
separate in some circumstances. Certain clouds, such as ice clouds, can
have very similar spectral signatures to snow. Sometimes, it is almost
impossible to separate clouds from snow based only on the spectral
information.

To detect clouds, cloud shadows, and snow, one common approach
is to identify them manually based on hand-drawn polygons. This
works fine for processing a few Landsat images, but if we want to use
a large number of Landsat images, more automated algorithms are
needed. Recently, many new automated algorithms have been devel-
oped based on a single Landsat image (Huang, Goward, et al., 2010;
Huang, Thomas, et al., 2010; Irish et al., 2006; Masek et al., 2006;
Oreopoulos, Wilson, & Várnai, 2011; Roy et al., 2010; Scaramuzza,
Bouchard, & Dwyer, 2012; Zhu & Woodcock, 2012). The development
of these automated algorithms has made it possible for various kinds
of remote sensing activities that use many Landsat images. However,
for certain kinds of applications such as change detection, the single-
date masking algorithms are still not accurate enough. Some of the
single-date algorithmsare capable of providingmaskswithhigh accuracy,
but, given the relatively small areas of land cover change in most envi-
ronments, any errors in the masking process will pose major problems
for change detection. To remove clouds as much as possible, one solu-
tion for single-date algorithms is to use a lower threshold in detecting
clouds (Zhu & Woodcock, 2012). However, this will also overestimate
clouds and their shadows, and many clear pixels will be classified as
cloud or cloud shadow, making change detection algorithms difficult
for these pixels because of insufficient data.

To better detect clouds, cloud shadows, and snow, new algorithms
based on multitemporal images have been developed for a number of
satellite sensors, including Landsat (Goodwin, Collett, Denham, Flood,
& Tindall, 2013; Hagolle, Huc, Pascual, & Dedieu, 2010; Jin et al., 2013;
Wang, Ono, Muramatsu, & Fujiwara, 1999), Systeme Probatoire
d'Observation de la Terre (SPOT) (Tseng, Tseng, & Chien, 2008), Spinning
Enhanced Visible and Infrared Imager (SEVIRI) (Derrien & Le Gléau,
2010), and Moderate Resolution Imaging Spectroradiometer (MODIS)
(Liu & Liu, 2013; Lyapustin, Wang, & Frey, 2008). The basic idea of
these algorithms is that clouds, cloud shadows, and snow will cause
sudden changes to the reflectance, and by comparing a reference
image without clouds to the observed image, clouds, cloud shadows,
and snow will be easily detected. These algorithms are reported to
have higher accuracies in detecting clouds and their shadows.
Goodwin et al. (2013) found that their multitemporal algorithm will
produce better results in detecting cloud shadow compared to the
Function of mask (Fmask) algorithm (Zhu &Woodcock, 2012). Despite
the reported better results in thesemultitemporal algorithms, there are
also disadvantages. The biggest disadvantage is that they may cause
problems for applications like change detection because land cover
change will also result in sudden changes to satellite observations.
Most of these multitemporal cloud, cloud shadow, and snow detection
algorithms rely on the assumption that between the time of the refer-
ence image and the observed image there is not any land cover change
and differences in reflectance only result from clouds, cloud shadows,
and snow. This may be true for some sensors with high temporal
frequency such as MODIS or SEVIRI if the reference image is very close
in time with the observed image. For sensors like Landsat, this assump-
tion is often invalid, especially for places where land cover change is
common. There have been several approaches proposed for limiting
the effect of land cover change on multitemporal cloud and cloud
shadow identification. For example, some of the algorithms use the
Band 7/Band 1 ratio (Zhu et al., 2012) or the Band 3/Band 1 relationship
(Hagolle et al., 2010) to distinguish some kinds of frequent changes
(e.g. agriculture) from clouds. Lyapustin et al. (2008) propose to use
an internally derived surface change mask to prevent the possibility of
identifying surface change as clouds. On the other hand, Goodwin
et al. (2013) use a geometry-based approach to distinguish land cover
change from cloud shadows. However, it is difficult to exclude all
kinds of land cover change with these empirically derived spectral
tests or include all possible changes in a surface change mask, particu-
larly given the wide variety of kinds of land cover change. This kind of
commission error — where land cover change is removed from images
as part of the cloud/cloud shadow screening process — is particularly
serious when the ultimate goal of the analysis is to monitor land cover
change. Moreover, as both clouds and snow usually make the visible
bands brighter, it is difficult to separate snow from clouds based on
simple image differencing. Most multitemporal algorithms assume
that there is no snow in the image and the pixels that are brighter
than the reference values are only due to clouds (Goodwin et al.,
2013; Hagolle et al., 2010; Jin et al., 2013; Wang et al., 1999).
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The trade-off in multitemporal cloud, cloud shadow, and snow
screening between higher accuracy and the possibility of masking out
land cover change is significant. In an attempt to solve this problem,
we developed a new algorithm designed specifically for change detec-
tion that employs many images called Tmask (multiTemporal mask)
for automated detection of clouds, cloud shadows, and snow in Landsat
images. This algorithm has the following advantages: 1) it achieves
more accurate detection of clouds, cloud shadows, and snow; 2) it
does not exclude land cover change; and 3) it has better discrimination
of clouds and snow.

2. Data and study area

2.1. Study area

We use the Northeastern United States as our study area, which
includes all of Rhode Island, parts of Eastern Connecticut, and much of
Eastern Massachusetts (Fig. 1). It has been selected for the following
reasons: 1) this coastal area is frequently influenced by both clouds
and snow; 2) there are many kinds of land cover change occurring in
this study area, including forest clearing, urbanization, and abandon-
ment of agricultural fields (Zhu & Woodcock, 2014); and 3) there are
large areas of forest in this study area and in winter the detection of
snow pixels is difficult for pixels that include both forest and snow.
Fig. 2. Estimates for Bands 2 (A), 4 (B), and 5 (C) for TOA reflectance for a deforestation pixel bas
clear observations, and black circles are either clouds, cloud shadows, or snow identified by Fma
that does not include land cover change. The blue line represents the time series model that in
the land cover change signal, especially for Band 5 TOA reflectance, and the blue line success
(For interpretation of the references to color in this figure legend, the reader is referred to the
2.2. Landsat data

A total of 88 Level 1 Terrain corrected (L1T) Landsat Thematic
Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) images
from 2005 to 2006 at Worldwide Reference System (WRS) Path 12
and Row 31 are used. We use all available Landsat TM and ETM+
images with cloud cover less than 80% (determined by the Fmask
algorithm).

3. Methods

3.1. Image pre-processing

The original Digital Number (DN) values of Landsat Bands 2, 4, and 5
(Landsat-7 band numbering) are converted to Top Of Atmosphere
(TOA) reflectance with the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) atmosphere correction tool (Masek et al.,
2006). Band 2, 4, and 5 TOA reflectance and Fmask results (see
Section 3.2.1 for details) are then stacked to have the same upper left
corner and same image size. We choose TOA reflectance instead of
surface reflectance as Tmask input because TOA reflectance includes
all atmosphere influences and atmosphere correction is meaningless
for cloud pixels. Instead of using the blue band (Band 1) for cloud detec-
tion as many multitemporal algorithms do (Goodwin et al., 2013;
ed on two different time seriesmodels (Tmaskmodel and a simplermodel). Black dots are
sk and are not used in themodel estimation. The red line represents the time seriesmodel
cludes land cover change. Note that for this deforestation pixel the red line fails to capture
fully captures most of the signal contributed by both seasonality and land cover change.
web version of this article.)
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Hagolle et al., 2010; Jin et al., 2013; Wang et al., 1999), Tmask uses the
green band (Band 2) for detecting clouds and snow. Though the blue
band has the advantage of generally low reflectance for most of the
Earth surface and relatively high reflectance for clouds and snow, this
Landsat Band is also known to saturate frequently (Dozier, 1984,
1989). This will cause serious problems for the multitemporal algo-
rithms that use the blue band for cloud detection because the presence
of clouds and snow will not make saturated, bright surfaces any
brighter. The other drawback for the blue band is that it is also sensitive
to other atmospheric factors such as aerosols and smoke (Kaufman
et al., 1997; Vermote, El Saleous, & Justice, 2002). On the other hand,
the green band (Band 2) has proven to be less frequently saturated
(Dozier, 1984, 1989) and at the same time less sensitive to atmospheric
influences. The Near Infrared (NIR) band (Band 4) is mainly chosen for
cloud shadow detection and snow and cloud shadow separation
because cloud shadows make the NIR band darker, but snow makes
the NIR band brighter. The Short Wave Infrared (SWIR) band (Band 5)
is used to separate snow and clouds, and because snow and cloud
shadows are generally dark in this band, but clouds are usually brighter,
Fig. 3. Tests of the influence of different numbers (one, three, and five) of consecutive Fmaskmi
iterations for Band2 TOA reflectance. Clear pixels are black dots. Clouds, cloud shadows, snow ar
themodel estimates with a maximum of one, three, and five iterations. Fig. 3A shows themode
when Fmaskmakes three mistakes in a row. Fig. 3C shows themodel estimation results when F
five iterations, the model estimation is not influenced even if Fmask misses clouds five consecu
referred to the web version of this article.)
Band 5 also helpswith cloud shadowdetection.Note thatwe did not use
the thermal band for thismultitemporal cloud, cloud shadow, and snow
detection, though it has been reported very helpful in detecting clouds
in many single-date algorithms (Huang, Goward, et al., 2010; Huang,
Thomas, et al., 2010; Irish et al., 2006; Masek et al., 2006; Zhu &
Woodcock, 2012). The reason for not including the thermal band in
this multitemporal algorithm is that the thermal band is quite sensitive
to different physical phenomena that are not related to cloud, cloud
shadow, or snow and if this band is included, many commission errors
will occur.

3.2. First step — initial masking

The basic idea of the Tmask algorithm is to compare modeled or
“predicted” TOA reflectance with Landsat observations to detect clouds,
cloud shadows, and snow. The “predicted” TOA reflectance comes from
a time series model. However, the time series analysis needs a dataset
that is 100% free of clouds, cloud shadows, and snow, as a single missed
outlier can bias the estimation of the time series model. On the other
stakes on the RIRLSmethod based on different numbers (one, three, and five) of maximum
eblack circles. Fmaskmistakes are blue circles. The red, green, and blue lines correspond to
l results when Fmask only makes one mistake. Fig. 3B shows themodel estimation results
mask makes fivemistakes in a row. Note that when the RIRLSmethod uses a maximumof
tive times. (For interpretation of the references to color in this figure legend, the reader is
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Fig. 4. Flow chart of Tmask spectral differencing algorithm.
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Fig. 5. Illustration of the Norwegian Linear Reflectance-to-snow-cover (NLR) algorithm in
which a pixel's digital intensity level is linearly transformed to a percentage of snow cover
(Fig. 1 in Andersen, 1982).
hand, this 100% clean dataset is only possible if we can detect all clouds,
cloud shadows, and snowwithout any error, which is not possible using
any single-date algorithm. To avoid this “chicken and egg” problem, we
used a progressive method that first uses a single-date algorithm
(Fmask) to exclude most of the clouds, cloud shadows, and snow.

3.2.1. The Fmask algorithm
In this paper we used the newly developed single-date Fmask

algorithm (Zhu & Woodcock, 2012) for this initial masking because of
its high accuracy in cloud detection (96.4% in overall accuracy) and its
capacity to provide cloud shadow and snow masks. The Fmask algo-
rithm is applied to individual images (i.e. single dates) and provides a
cloud, cloud shadow, and snow mask for each image. In this algorithm,
clouds and snow are identified based on many spectral tests, and cloud
shadow is initially extracted based on a flood-fill transformation and
then confirmed based on an object-based cloud and cloud shadow
match approach. We applied the Fmask algorithm to all 88 Landsat
images.We also dilated all clouds, cloud shadows, and snow by 3 pixels
in all 8 connected directions to remove the surrounding pixels thatmay
be partially influenced.

3.2.2. Backup algorithm for Fmask
For most of the single-date algorithms (including Fmask), one of the

major problems is that theymay exclude pixels consistently detected as
clouds if they are cold, bright, and white. This will make estimation of
the time series model fail because of insufficient clear observations
(less than 15 “clear” observations). For each pixel, the Tmask model
needs at least 15 “clear” observations for robust model estimation. If
the number of total “clear” observations for a pixel is less than 15,
model estimation may fail easily and when this happens, a backup
algorithm is applied. This backup algorithm is based on the assumption
that clouds cannot stay at the same place persistently, and Band 2 TOA
reflectance for most cloud pixels will always be higher than the median
values of the entire time series at the same location. Therefore, if Band 2
TOA reflectance of a pixel is less than or equal to the median value plus
0.04, it is identified as a “clear” pixel (Eq. 1). The reason for adding 0.04
for thresholding is based on the fact that clouds will make Band 2
brighter and based on the testing of all the 88 images, a threshold of
0.04 detects most of the clouds (even including some very thin clouds)
and will not misidentify other changes (e.g., seasonal changes, soil
wetness changes) as clouds. Note that all the pixels used for calculating
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themedian value of Band 2 TOA reflectance should be non-snow pixels,
as snow can persist in certain areas and if we do not exclude snow
beforehand, the median value of Band 2 TOA reflectance may be from
a snow pixel, which will make multitemporal cloud masking fail (the
“predicted” pixel is not a clear pixel). Therefore, all the time series
observations used for the backup algorithm are from non-snow pixels
identified by the Fmask algorithm. For places of perennial snow, even
this backup algorithm will not be able to work due to the lack of non-
snow observations. For these pixels, we will use the single-date algo-
rithm results (Fmask results in this paper) directly for labeling (cloud,
cloud shadow, snow, or clear). Note that we will not exclude cloud
shadow pixels in this backup algorithm because the areas covered by
cloud shadows are much smaller compared to those covered by clouds.
Because the second step (Tmask algorithm) is capable of handling out-
liers, this backup algorithm will work as long as it excludes most of the
outliers that are caused by clouds and snow.

ρ 2; xj

� �
≤median ρ 2; x 1;2;3…Kf g

� �� �
þ 0:04 ð1Þ

where:

x is the Julian date
Fig. 6. Comparison of Fmask and Tmask results for a subset of Landsat images at Path 12 Row 31
their shadows. There are four 12× 12 km2 area subset images covering the same area. The uppe
yellow, and cloud shadows are in green. The lower left image is a composite of Landsat Bands 5
identified clouds, cloud shadows, and snow in Fmask will be a little larger in extent than the T
dilation is necessary for Fmask asmost of the time the pixels surrounding clouds, cloud shadows
that are partially coveredwith snow.Dilation is unnecessary for Tmask because the time series a
Therefore, Fmask has a spatial resolution of 3 × 3 pixels while Tmask is a pixel-level mask. (For
web version of this article.)
j is the jth non-snow pixel
K is the total number of non-snow pixels
ρ(2, xj) is the Observed Landsat Band 2 TOA reflectance at Julian date

x for the jth non-snow pixel.
3.3. Second step — Tmask algorithm

The Tmask algorithm is based on the results of initial masking
and further improves the initial masking results by using temporal
information. It is based on the idea that we have already identified
most of the cloud, cloud shadow, and snow in the first step, and by
using an empirically estimated time series models for the rest of the
“clear” observations it is possible to model or “predict” TOA reflectance
with Landsat observations to better detect clouds, cloud shadows, and
snow. When observations differ dramatically from the “predicted”
values, it may be due to clouds, cloud shadows or snow. The simplified
version of the Tmask algorithm has been successfully applied for
applications like monitoring forest disturbance (Zhu et al., 2012) and
continuous change detection and classification of land cover (Zhu &
Woodcock, 2014). However, in these applications, there was no
acquired August 11th 2006— a scenario where two algorithms agree for thick clouds and
r left image is the Fmask result, and the upper right image is the Tmask result. Clouds are in
, 4, and 2. The lower right image is a Landsat Band 6 (Brightness Temperature) image. The
mask results because of the three pixel dilation of clouds, cloud shadows, and snow. This
, and snowwill still be influenced by the thin edges of clouds and their shadows and pixels
pproach is capable of detecting thin clouds and their shadows and evenmixed snowpixels.
interpretation of the references to color in this figure legend, the reader is referred to the



223Z. Zhu, C.E. Woodcock / Remote Sensing of Environment 152 (2014) 217–234
separation of clouds, cloud shadows, and snow, and they are all treated
as the same kind of outliers.

3.3.1. Tmask model
The “clear” observations of Band 2, 4, and 5 TOA reflectance identi-

fied in the initial masking either by Fmask or the backup algorithm are
the input for the Tmask algorithm. A simple time series model
consisting of sines and cosines is used to estimate Band 2, 4, and 5
TOA reflectance (Eq. 2). The form of this time series model is similar
to thosewe have used in the past for predicting future Landsat observa-
tions in the context of monitoring land cover change (Zhu &Woodcock,
2014; Zhu et al., 2012). We made the time series model as simple as
possible because it may be influenced by outliers if the model has too
many coefficients. Therefore, Tmask uses two coefficients to capture
the seasonality and one coefficient to capture the overall reflectance.
The last two coefficients (a2,i, b2,i) are used to allow the time series
model to respond to different kinds of land cover change. By including
the land cover change in the time series model, Tmask is less likely
to exclude land cover change when comparing model estimates and
satellite observations.

ρ̂ i; xð Þ ¼ a0;i þ a1;i cos
2π
T

x
� �

þ b1;i sin
2π
T

x
� �

þ a2;i cos
2π
NT

x
� �

þ b2;i sin
2π
NT

x
� �

ð2Þ

where,

x the Julian date
i the Landsat Band i TOA reflectance (i = 2, 4, and 5)
Fig. 7. Comparison of Fmask and Tmask results for a subset of Landsat images at Path 12 Row 3
thin clouds (the images follow the description in the caption for Fig. 6).
T the number of days per year (T = 365)
N the number of years (rounds to the nearest integer greater

than or equal to N)
a0,i the coefficient for the overall value for Landsat Band i TOA

reflectance
a1,i, b1,i the coefficients for intra-annual change for Landsat Band i

TOA reflectance
a2,i, b2,i the coefficients for inter-annual change for Landsat Band i

TOA reflectance.

To illustrate the importance of the two coefficients used for modeling
land cover change, Fig. 2 shows the model estimation results for Landsat
Band 2, 4, and 5 TOA reflectance with and without the last two coeffi-
cients for a deforestation pixel. In this Figure, a total of 88 Landsat images
between 2005 and 2007 are used. The black dots are clear observations,
and the black circles are either clouds, cloud shadows, or snowpreviously
identified by Fmask. The red line is the simple model that only uses the
first three coefficients in Eq. (2). The blue line is the Tmask model esti-
mate that includes the last two coefficients in Eq. (2) for modeling land
cover change. The simple model (red line) fails to capture the deforesta-
tion signal, and the Tmask model (blue line) successfully captures most
of the seasonality differences and land cover changes in the time series
data. This situation is especially obvious for Band 5 TOA reflectance, as
it is more sensitive to forest disturbance.
3.3.2. Tmask model estimation
As the Fmask algorithm is not perfect, it is likely that cloud, cloud

shadow, or snow observations exist within the rest of the “clear” pixels.
1 acquired October 22nd 2006— a scenario where the two algorithms agree for extremely
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The regression results will be greatly influenced by these outliers
if using the Ordinary Least Square (OLS) method. To overcome this
problem, a Robust Iteratively Reweighted Least Squares (RIRLS)method
is used for estimating the time seriesmodel (DuMouchel &O'Brien, 1989;
Holland &Welsch, 1977; O'Leary, 1990; Street, Carroll, & Ruppert, 1988).
This algorithm is capable of reducing the weight of the outliers via an
iterative process that is capable of providing accurate estimates even
when outliers exist.

The weighting function in RIRLS is based on the Tukey biweight, also
known as the bisquare weight (Heiberger & Becker, 1992). The weights
are a function of the residuals from the previous iteration (Eq. 3). If
the absolute value of the normalized residual (abs(r)) is less than 1,
the weights (w) are negatively related to the magnitude of normalized
residual (r). Otherwise, if the magnitude is larger than 1 (mostly
because of clouds, cloud shadows, and snow), the weights are forced
to zero. In this way, most of the outliers will have little or no impact
on the final results.

w ¼ 1−r2
� �2

forabs rð Þ≤1
0 forabs rð ÞN1

(
ð3Þ

where:

r resid / (0.4685 × s × sqrt(1− h))
s MAD / 0.6745
Fig. 8. Comparison of Fmask and Tmask results for a subset of Landsat images at Path 12 Row
thin clouds (Tmask works and Fmask fails). Note that the extremely thin clouds in the center
description in the caption for Fig. 6). (For interpretation of the references to color in this figure
resid is the vector of residuals from the previous iteration
h is the vector of leverage values from a least-square fit
MAD Median Absolute Deviation (MAD) of the residual from their

median.
One of the most important parameters associated with the use of

RIRLS is themaximum number of iterations. Usually, the more iteration
used, the more robust is the method to outliers. However, this also
increases computation time. In our initially screened dataset, it is
assumed that Fmask will make mistakes occasionally, but will not
make mistakes on consecutive dates. To test how the number of maxi-
mum iterations responds to different numbers of consecutive Fmask
mistakes, we let the Fmask algorithm make mistakes for one, three,
and five consecutive observations. Fig. 3 shows time series of Band 2
TOA reflectance screened by Fmask. Clear pixels are black dots. Clouds,
cloud shadows, and snow are black circles. Fmask mistakes are blue
circles. The model estimates with a maximum of one, three, and five
iterations correspond to the red, green, and blue lines. If Fmask only
makes one mistake (Fig. 3A), the model estimates with a maximum of
three and five iterations are almost the same (not influenced by the
outlier), but the model estimates with a maximum of one iteration are
significantly influenced by this single outlier. If Fmask makes three
mistakes in a row (Fig. 3B), the model estimates with a maximum of
three and five iterations are still very similar, but the model estimates
with maximum of one iteration is seriously influenced by the three
consecutive outliers. Finally, if Fmask makes five mistakes in a row
(Fig. 3C), the model estimates with a maximum of five iterations is
still not influenced by the outliers, but the model estimates with a
31 acquired May 7th 2006 — a scenario where two algorithms disagree for extremely
of the red rectangle are missed by Fmask but captured by Tmask. (The images follow the
legend, the reader is referred to the web version of this article.)
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maximum of one and three iterations are all influenced. Assuming that
Fmask will not miss clouds more than five consecutive times for the
same pixel, Tmask algorithm uses a maximum of five iterations to find
clouds, cloud shadows, and snow that are occasionally missed in the
first step.

3.3.3. Tmask spectral differencing
The Tmask algorithm detects clouds, cloud shadows, and snow by

differencing the “predicted” images (based on model estimates) with
the observed images. A simple decision tree is generated based on the
difference between observed and estimated values and the spectral
characteristics of clouds, cloud shadows, and snow (Fig. 4). A threshold
of 0.04 is chosen for Tmask spectral differencing. This threshold is
derived based on a test of all 88 images for the study area by visually
examining cloud, cloud shadow, and snow masks when using different
thresholds. For most of clear pixels, the difference between “predicted”
and the observed Band 2, 4, and 5 TOA reflectance is always less than
0.04, while if there are clouds, cloud shadows, and snow present, the
difference is usually larger than 0.04. If the threshold is larger than
0.04, some thin clouds, cloud shadows, and snow pixels may not be
able to be detected and if it is smaller than 0.04, noise in the data and
other subtle changes such as soil wetness may show up as clouds,
cloud shadows, or snow. Therefore, this threshold of 0.04 balances the
omission and commission errors for detecting cloud, cloud shadow,
and snow.
Fig. 9. Times series of Band 2 (A), 4 (B), and 5 (C) TOA reflectance of the pixel located at the cente
are black circles, and the Fmaskmistake is shown in the red circle. The blue lines represent them
Tmask changes the spectral signal significantly, especially in Band 2 TOA reflectance. (For inter
version of this article.)
If the observed Band 2 TOA reflectanceminusmodel estimated Band
2 TOA reflectance is larger than 0.04, this pixel is identified as cloud or
snow, as both make visible bands brighter. Cloud and snow separation
is based on changes in Band 4 and Band 5 TOA reflectance. The biggest
difference is magnitude and direction of change in Band 5 TOA reflec-
tance, as clouds tend to make Band 5 TOA reflectance brighter while
snow has the opposite effect. However, there are some ice clouds that
can have relatively low Band 5 TOA reflectance, and snow mixed with
trees reduces the darkening effect of snow in this band (Xin et al.,
2012). Therefore, Tmask uses a pixel-based threshold (T_snow) derived
from a modified Norwegian Linear Reflectance-to-Snow-Cover (NLR)
algorithm (Andersen, 1982). All snow pixels should have changes in
Band 5 TOA reflectance less than this threshold and cloudswill be larger.
TOA reflectance of Band4 is also used to help separate snow fromclouds
because snow has a much higher reflectance than clear pixels in the
winter, while for clouds the Band 4 TOA reflectance is not always higher
than the clear observations, especially during the growing season when
vegetation reflects strongly in the Near-Infrared.

On the other hand, for Band 2, if thedifference between the observed
reflectance and the “predicted” is less than 0.04, this pixel is either
clear or cloud shadow, as neither case will make the visible bands
brighter. The only difference between clear pixels and cloud shadow is
that cloud shadow will make Band 4 and Band 5 TOA reflectance
lower, while clear pixels will be similar to the estimated value. There-
fore, if the observed Band 4 and Band 5 TOA reflectance are 0.04
r of the red rectangle in Fig. 8. Clear pixels are black dots. Clouds, cloud shadows, and snow
odel-estimated values. Note that the cloud observationmissed by Fmask but captured by

pretation of the references to color in this figure legend, the reader is referred to the web
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lower than the “predicted” values, the pixel is identified as cloud
shadow. Fig. 4 is the detailed flow chart of Tmask spectral differencing
algorithm.

3.3.4. Tmask snow threshold
As clouds tend to make Band 5 TOA reflectance higher and snow

tends to make it lower, a spatially and temporally adjusted Band 5
threshold (T_snow) is determined by a modified version of the NLR
algorithm. The NLR algorithm is an empirical reflectance-to-snow-
cover model originally proposed by Andersen (1982) to estimate
snow in Advanced Very High Resolution Radiometer (AVHRR) observa-
tions. The NLR algorithm assumes a linear relationship between the
observed reflectance (or DN or radiance) and the fractional snow
cover for a pixel (Fig. 5). The basic principle of the NLR algorithm is
similar to linear spectral unmixing based on a single spectral band.
The two spectral components are snow and non-snow background,
and the reflectance of the spectral components are calibrated based on
100% fractional snow cover and 0% fractional snow cover pixels. This
algorithm works for the visible and near infrared bands. In Tmask, we
use green band reflectance for retrieving fractional snow cover for
each pixel. The NLR algorithm has good accuracies for homogeneous
areas, but it is not accurate for complex landscapes due to its simple
assumption of constant reflectance of snow-free pixels (Vikhamar &
Solberg, 2003).

To make this algorithm work for heterogeneous environments, we
modified the NLR algorithm as follows: the reflectance of snow-free
pixels (0% fractional snow coverage) will be no longer constant, but is
Fig. 10. Comparison of Fmask and Tmask results for a subset of Landsat images at Path 12 Row
clouds (Fmaskworks and Tmask fails). Note that the extremely thin clouds in the center of the re
in the caption for Fig. 6). (For interpretation of the references to color in this figure legend, the
“predicted” based on the time series model in Eq. (2). Therefore, we
can estimate the snow cover percentage for each pixel using the
difference between the observed and “predicted” Band 2 reflectance,
as shown in Eq. (4). In this equation, ρ(2, PureSnow) is a constant for
100% fractional snow cover pixel in TOA Band 2 reflectance. Due to
atmospheric influences and the saturation of Landsat visible bands for
bright objects, the Band 2 TOA reflectance of the pure snow pixels
(100% fractional snow cover) is usually around 0.4. Therefore, the
value of ρ(2, PureSnow) is set to 0.4 in the modified NLR algorithm.

Fractionalsnowcover ¼ ρ 2; xð Þ−ρ̂ 2; xð Þ
ρ 2; PureSnowð Þ−ρ̂ 2; xð Þ ð4Þ

where:

ρ(2, x) is the observed Landsat Band 2 TOA reflectance at Julian date x
ρ̂ 2; xð Þ is the estimated Landsat Band2 TOA reflectance at Julian date x
ρ(2, PureSnow) is the Landsat Band 2 TOA reflectance of pure snow (a

constant value of 0.4).

Similarly, we can apply the modified NLR algorithm to Band 5 TOA
reflectance based on the same assumption of a linear relationship
between the reflectance and the fraction of snow cover, except that
for TOA Band 5 reflectance this relationship is negative. Band 5 TOA
reflectance is generally bright for most land covers except for snow,
which is usually very low. The reason that this band is not used for the
NLR algorithm for estimating fractional snow cover is that it is also
31 acquired May 7th 2006 — scenario where two algorithms disagree for extremely thin
d rectangle are capturedby Fmask butmissed by Tmask (the images follow the description
reader is referred to the web version of this article.)
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sensitive to snow grain size. For pure snow pixels, Band 5 reflectance
can vary from 0 to 0.12, when the grain radii vary from 1.00 mm to
0.05 mm (Dozier & Painter, 2004). However, in Tmask algorithm, we
are not interested in estimating the fractional snow cover. Instead, we
want to calculate the optimal threshold for separating snow and
cloud. Therefore, we can still derive an equation similar to Eq. (4) for
Band 5 TOA reflectance using the modified NLR in Eq. (5).

Fractionalsnowcover ¼ ρ 5; xð Þ−ρ̂ 5; xð Þ
ρ 5; PureSnowð Þ−ρ̂ 5; xð Þ ð5Þ

where:

ρ(5, x) is the observed Landsat Band 5 TOA reflectance at Juliandate x
ρ̂ 5; xð Þ is the estimated Landsat Band5 TOA reflectance at Julian date x
ρ(5, PureSnow) is the Landsat Band 5 TOA reflectance of pure snow

(varies from 0 to 0.12).

By combing Eqs. (4) and (5), we can derive Eq. (6), which provides
the estimated change between the observed and estimated Band 5
TOA reflectance for snow pixels.

Estimateddelta B5ð Þ ¼ ρ 5; PureSnowð Þ−ρ̂ 5; xð Þð Þx ρ 2; xð Þ−ρ̂ 2; xð Þð Þ
ρ 2;PureSnowð Þ−ρ̂ 2; xð Þ ð6Þ

As clouds tend to have larger delta(B5) values and snow has smaller
delta(B5) values, we need an upper bound of the estimated delta(B5)
value to serve as the threshold in Tmask (T_snow). Based on Eq. (6),
Fig. 11. Times series of Band 2 (A), 4 (B), and 5 (C) TOA reflectance of the pixel located in the cen
are black circles, and the Fmaskmistake is a red circle. The blue lines represent themodel-estim
not change the spectral signal significantly for all three bands. (For interpretation of the referen
the estimated delta(B5) value is directly related to ρ(5, PureSnow), and
the higher the value of ρ(5, PureSnow), the higher the value of estimated
delta(B5). Therefore, we use the maximum value of (5, PureSnow),
which is 0.12 to calculate the snow threshold. In this case, T_snow in
Fig. 4 is calculated in Eq. (7): if the observed Band 5 TOA reflectance
minus the estimated Band 5 TOA reflectance is less than T_snow, this
pixel is identified as snow, otherwise it is identified as cloud.

T snow ¼ 0:12−ρ̂ 5; xð Þð Þ � ρ 2; xð Þ−ρ̂ 2; xð Þð Þ
0:4−ρ̂ 2; xð Þ : ð7Þ

4. Results

We did not compute the accuracy for the Tmask results against a
manual mask as we did for the Fmask algorithm (Zhu & Woodcock,
2012) because manually identifying clouds, cloud shadows, and snow
in the Landsat images with high accuracy is very difficult. The manual
masks that Fmask used to assess its accuracy were derived by the
USGS for validating its Automated Cloud-Cover Assessment (ACCA)
algorithm (Irish et al., 2006). Even for the carefully derived USGS
cloud masks, the average difference of the overall accuracy of the 11
scenes examined by three analysts was around 7% (Oreopoulos et al.,
2011). Considering the high overall accuracy already achieved by
Fmask algorithm (96.4%), it would be difficult to make a manual mask
accurate enough to compare with an algorithm that is probably more
accurate than Fmask. Moreover, most of the USGS dataset only has
one reference image for each Landsat scene. To validate the Tmask
ter of red rectangle in Fig. 10. Clear pixels are black dots. Clouds, cloud shadows, and snow
ated values. Note that the cloud observationmissed by Tmask but captured by Fmask does
ces to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Comparison of Fmask and Tmask results for a subset of Landsat images at Path 12 Row 31 acquired July 26th 2006— a scenario where the two algorithms disagree for very small
clouds and their shadows (Tmask works and Fmask fails). Note that the small clouds and their shadows located within the red rectangle aremissed by Fmask but captured by Tmask (the
images follow the description in the caption for Fig. 6). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13.Comparison of Fmask and Tmask results for a subset of Landsat images at Path 12Row31 acquiredAugust 19th 2006— a scenariowhere two algorithms disagree for shadows from
clouds that are both thin and high (Tmaskworks and Fmask fails). Note that the cloud shadows located within the red rectangle are missed by Fmask but captured by Tmask (the images
follow the description in the caption for Fig. 6). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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algorithm, we need a time series of accurate manual masks, which
would be almost impossible to make. Therefore, in this study, the
Tmask results are only compared to the Fmask results at different
times for the study area. As most of the time Fmask and Tmask results
are very similar, in this comparison we focus on results where the
two algorithms differ. For each comparison shown here, there are four
12 × 12 km2 subsets of Landsat images covering the same area. The
upper left image is the Fmask result, and the upper right image is the
Tmask result. Clouds are in yellow, and cloud shadows are in green. If
there is snow, it is in cyan. The lower left image is a composite of Landsat
Bands 5, 4, and 2. The lower right image is Landsat Band 6 (Brightness
Temperature). We include the thermal band to help visualize some of
the extremely thin clouds that are hard to see in the optical bands but
are sometimes apparent in the thermal band. Generally, both the
Fmask and Tmask algorithms are accurate in detecting thick clouds
and their shadows (Fig. 6). For most of the thin clouds, the two algo-
rithms also show similar results, including the extremely thin clouds
that are hard to see in the color composites but obvious in the thermal
band (Fig. 7).

For some of the extremely thin clouds, Fmask and Tmask show
different results. Sometimes, Tmask is capable of identifying extremely
thin clouds that Fmask cannot (Fig. 8) and sometimes the opposite is
true (Fig. 10). Though Tmask does not always find all the thin clouds,
the thin clouds identified by Tmask have changed the spectral signal
significantly (Fig. 9). The clouds missed by Tmask but captured by
Fmask are clouds that are generally too thin to make TOA reflectance
deviate significantly from the model-estimated values (Fig. 11).
Fig. 14. Comparison of Fmask and Tmask results for a subset of Landsat images at Path 12 Row
shadows because of overlapping clouds with different heights (Tmask works and Fmask fails)
captured by Tmask (the images follow the description in the caption for Fig. 6). (For interpretat
of this article.)
Therefore this kind of omission error in Tmask is less likely to cause
problems for remote sensing activities like change detection. The pixel
located at the center of the red rectangle in Fig. 8 is a cloud pixel that
is hardly visible in the Band 5, 4, and 2 composite and the brightness
temperature image, and we can only find the pixel located at the center
of the red rectangle is slightly brighter compared to the clear pixels lo-
cated at the upper-left corner of the color composite image. Fig. 9
shows the times series for Band 2, 4, and 5 TOA reflectance for this
pixel. In this Figure, clear pixels are black dots, and clouds, cloud
shadows, and snow are black circles (Fmask results). The cloud observa-
tion missed by Fmask is a red circle. The blue lines represent the model
estimated values. Significant differences exist between the model esti-
mates and observations in all three bands, especially in Band 2, for the
cloud observation missed by Fmask (red circle). If we miss screening
this cloud observation, it will be confused with land cover change
based on spectral differencing. On the other hand, for the thin clouds
captured by Fmask but missed by Tmask (Fig. 10), there is only a subtle
difference between observed and estimated values, and this difference
is still within the range of most change detection algorithms (Fig. 11).

As Tmask is a pixel-based algorithm, it is able to identify very small
clouds and their shadows, which are omitted by object-based algo-
rithms like Fmask if the size of the cloud object is less than 9 pixels
(Zhu & Woodcock, 2012). In Fig. 12, Fmask fails to identify the small
clouds and their shadows located within the red rectangle but Tmask
successfully identifies them.

The biggest benefit of Tmask compared to Fmask is better identifica-
tion of cloud shadows. Cloud shadow detection in Fmask is based on a
31 acquired August 3rd 2006 — a scenario where the two algorithms disagree for cloud
. Note that the cloud shadows located within the red rectangle are missed by Fmask but
ion of the references to color in this figure legend, the reader is referred to theweb version
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similarity match between clouds and their shadows, which may not be
accurate in the following situations: 1) when a cloud is both thin and
high; 2) when overlapping cloud objects are at different altitudes;
3) when another dark object is located between the clouds and their
shadows; and 4) when clouds are sliced into pieces because of the Scan
Line Corrector (SLC-off) problem. In Fig. 13, the cloud is both thin and
high; Fmask does not match the shadow for it correctly, but Tmask
identifies the cloud shadow successfully (see the red rectangle in Fig. 13).

Problems can also occur when clouds at different heights overlap
each other. In Fig. 14, two small thick clouds are overlapped with a
large thin cloud (see the red rectangle), and Fmask assumes that they
are the same “cloud object” and only matches one cloud shadow for
them, but Tmask identifies the cloud shadow successfully.

If there are other dark objects between clouds and their shadows,
they can also confuse the cloud and cloud shadow match in Fmask
and cause errors in cloud shadow identification, but Tmask identifies
the cloud shadow successfully (see the red rectangle in Fig. 15).

Finally, the SLC-off problem can slice one cloud intomany pieces and
the matched cloud shadows may also show up in small pieces, but
Tmask identifies the cloud shadow successfully (see red rectangle in
Fig. 16).

For snow and cloud separation, the Tmask algorithm also shows
better results than Fmask. For some of the snow covered forest areas,
Fmask frequently identifies snow as clouds, but Tmask is capable of
separating them (Fig. 17).

Though the Tmask algorithm has significant advantages over the
single-date algorithm, it also has disadvantages. For example, the
Fig. 15. Comparison of Fmask and Tmask results for a subset of Landsat images at Path 12Row31
because of dark objects located between clouds and their shadows (Tmask works and Fmask fa
captured by Tmask (the images follow the description in the caption for Fig. 6). (For interpretat
of this article.)
Tmask algorithm assumes all ephemeral changes are caused by clouds,
cloud shadows, and snow. However, other ephemeral changes such as
flooding or soil wetness may change TOA reflectance for short periods
of time. In such cases, the time series model will not be able to respond
to this kind of ephemeral change, and comparison of model estimates
with Landsat observations may result in the changes being labeled as
clouds, cloud shadows, or snow (Fig. 18). For example, the pixel located
in the center of the red rectangle in Fig. 18 is a clear pixel that was
especially wet on June 16th 2006. It is correctly identified as a clear
pixel in Fmask but misidentified as a cloud shadow in Tmask because
the observed values in the time series of this pixel (Fig. 19) are much
lower than the model estimated value on June 16th 2006 (the red
circle). This kind of commission error will remove some good observa-
tions; however, for detecting land cover change, this kind of commission
error will not cause problems, and instead it will remove ephemeral
changes that are easily confused with land cover change.

5. Discussion and conclusions

Though the single-date algorithm (Fmask) achieves high accuracy in
detecting clouds (overall accuracy of 96.4% (Zhu & Woodcock, 2012)),
for some specific applications such as change detection even a small
amount of error can be a problem because the amount of land cover
change present at any time may be as small as a fraction of a percent
of the image. Thus removal of observations that are actually land
cover change when they look like clouds can result in significant under-
estimation of land cover change.
acquiredMarch 20th 2006— a scenariowhere two algorithms disagree for cloud shadows
ils). Note that the cloud shadows locatedwithin the red rectangle aremissed by Fmask but
ion of the references to color in this figure legend, the reader is referred to theweb version
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Fig. 16. Comparison of Fmask and Tmask results for a subset of Landsat images at Path 12 Row 31 acquired October 14th 2006 — a scenario where two algorithms disagree for cloud
shadows because of SLC-off problem (Tmask works and Fmask fails). Note that the cloud shadows located within the red rectangle are sliced into small pieces in Fmask but correctly
identified in Tmask (the images follow the description in the caption for Fig. 6). (For interpretation of the references to color in this figure legend, the reader is referred to theweb version
of this article.)

Fig. 17. Comparison of Fmask and Tmask results for a subset of Landsat images at Path 12Row31 acquiredDecember 30th 2005— a scenariowhere two algorithms disagree for clouds and
snow (Tmask works and Fmask fails) (the images follow the description in the caption for Fig. 6).
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Fig. 18. Comparison of Fmask and Tmask results for a subset of Landsat image at Path 12 Row 31 acquired June 16th 2006— scenario where two algorithms disagree for cloud shadows
(Fmask works and Tmask fails). Note that within the red rectangle Tmask falsely identifies temporary wetness change as cloud shadow and Fmask does not. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Tmask does not use any global spectral thresholds as Fmask does;
instead, it is location and time specific. By including spatial and tempo-
ral context (and with the help of the single-date algorithm), Tmask is
able to identify all kinds of clouds at the pixel level. It can identify clouds
that cause changes in Landsat observations large enough to influence
time series analysis. Tmask is able to capture some of the extremely
thin clouds that Fmask cannot, clouds that significantly change the spec-
tral signal. The pixel-based character of the Tmask algorithm makes it
capable of detecting clouds and cloud shadows as small as one Landsat
pixel, information excluded by the object-based Fmask algorithm.
Furthermore, with the added temporal information, only three optical
bands are used, making the thermal band no longer necessary. This
means Tmask will also work for Landsat-like sensors (i.e. Sentinel 2A
and 2B) that do not have thermal bands.

The most significant improvement in Tmask is cloud shadow detec-
tion. Due to the complexity of object-based cloud and cloud shadow
matching in Fmask, cloud shadow detection in Fmask is less accurate
than cloud detection (Zhu &Woodcock, 2012). Cloud shadow detection
in Tmask is not influenced by geometry-based matching of clouds and
cloud shadows. The cloud shadows are detected byfinding observations
that are lower thanmodel predictions in Band 4 and Band 5 TOA reflec-
tance. Though the Tmask algorithm may not be able to identify some
cloud shadows that do not make the two spectral bands dark enough
to be identified as cloud shadows, this kind of omission error will not
cause serious problems for most of remote sensing activities, including
change detection, as the missed cloud shadows will not change the
reflectance significantly.
Separating snow and clouds is often difficult for optical remote
sensing because of their similar spectral signatures. The Tmask algo-
rithm uses the extra temporal information coupled with a modified
NLR model to separate snow and clouds. Though both clouds and
snow will make Band 2 TOA reflectance higher, the influence of snow
and clouds on Band 5 TOA reflectance is quite different. Tmask calcu-
lates a snow threshold (T_snow) for Band 5 TOA reflectance for each
pixel based on a modified NLR model. Tmask showed better results in
snow and cloud detection compared to Fmask. This modified NLR
model may also be used to estimate fractional snow cover with better
results than the traditional NLR algorithm because instead of assuming
that there is only one constant value for snow-free pixels, we know
what the Earth surface looks like in any particular place and time
without snow.

There are also limitations in the Tmask algorithm. First, in order to
estimate a time series model, Tmask needs 15 “clear” observations
(the observations can be from different years), making it less applicable
in places with high cloud cover or persistent snow. Second, Tmask may
falsely identify some ephemeral changes as clouds or cloud shadows.
While this may benefit detecting more persistent land cover changes,
it may not be good for applications that need to monitor more ephem-
eral changes. Third, a delay will always exist in the Tmask algorithm
because it needs more observations to respond to future land cover
change. Therefore, it is advised to use Tmask to generate cloud, cloud
shadow, and snowmasks for the images in themiddle of the time series.
For example, if we have 30 Landsat images used for this Tmask algo-
rithm, only cloud, cloud shadow, and snow masks for the 10 images
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Fig. 19. Times series of Band 2 (A), 4 (B), and 5 (C) TOA reflectance of the pixel located at the center of red rectangle in Fig. 18. Clear pixels are black dots. Clouds, cloud shadows, and snow
are black circles, and the Tmaskmistake is red circle. Themodel estimated values are in the blue line. Note that the temporarywetness change (red circle) hasmade all three bands change
significantly, but the next observation is back to normal. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
located in the middle of the time period is suggested for use in remote
sensing activities like change detection. Finally, Tmask also relies on
the assumption that only one land cover change takes place during
model estimation because the coefficients responsible for land cover
change can only respond to land cover change once. Therefore, Tmask
should be applied for masking multitemporal images within a few
years (1–5 years) to avoid problems in areas where multiple land
cover changes occur. One important future effort will be to test the
Tmask algorithm for other regions with different environments. In this
paper, the Tmask algorithm works well for one of the New England
site, but it hasn't been tested for areas that are more variable, such as
semi-arid areas or croplands. For places where the Earth surface is not
stable, the time series model estimation may not be accurate and we
may need the single-date algorithm results for places where the data
variation is large.

In conclusion, adding the use of multitemporal images improves
detection of clouds, cloud shadows and snow in Landsat images. Free
access to the archive of Landsat images at Earth Resources Observation
and Science (EROS) Data Center is revolutionizing many applications
using Landsat data, and this is yet another example. In essence, what
this algorithmdoes is use the history of a place to help evaluatewhether
it is covered by clouds, cloud shadows or snow in an individual image.
This sort of contextual information, in this case in the form of a time se-
ries model, particularly helps with detection of thin clouds and their
shadows, and separation of clouds and snow.
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