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A B S T R A C T

We developed the Function of mask (Fmask) 4.0 algorithm for automated cloud and cloud shadow detection in
Landsats 4–8 and Sentinel-2 images. Three major innovative improvements were made as follows: (1) integration
of auxiliary data, where Global Surface Water Occurrence (GSWO) data was used to improve the separation of
land and water, and a global Digital Elevation Model (DEM) was used to normalize thermal and cirrus bands; (2)
development of new cloud probabilities, in which a Haze Optimized Transformation (HOT)-based cloud prob-
ability was designed to replace temperature probability for Sentinel-2 images, and cloud probabilities were
combined and re-calibrated for different sensors against a global reference dataset; and (3) utilization of spectral-
contextual features, where a Spectral-Contextual Snow Index (SCSI) was created for better distinguishing snow/
ice from clouds in polar regions, and a morphology-based approach was applied to reduce the commission error
in bright land surfaces (e.g., urban/built-up and mountain snow/ice). The Fmask 4.0 algorithm showed higher
overall accuracies for Landsats 4–8 imagery than the 3.3 version (Zhu et al., 2015) (92.40% versus 90.73% for
Landsats 4–7 and 94.59% versus 93.30% for Landsat 8), and much higher overall accuracies for Sentinel-2
imagery than the 2.5.5 version of the Sen2Cor algorithm (Müller-Wilm et al., 2018) (94.30% versus 87.10%).

1. Introduction

Moderate spatial resolution images (10 to 30m) from Landsats 4–8
and Sentinel-2 provide a great opportunity for monitoring global en-
vironmental change (Drusch et al., 2012; Roy et al., 2014; Storey et al.,
2016; Wulder et al., 2015). However, these optical images are ex-
tensively influenced by clouds and their shadows (Ju and Roy, 2008; Li
and Roy, 2017), and their detections are usually the first and most
crucial preprocessing step. Although manual interpretation can create
accurate cloud and cloud shadow masks, it is very time-consuming and
no longer acceptable for processing a large volume of images, parti-
cularly since the free and open policy of Landsat and Sentinel-2 data
(Turner et al., 2015; Woodcock et al., 2008; Zhu et al., 2019). There-
fore, it is important to design fully automated algorithms to detect
clouds and their shadows in Landsats 4–8 and Sentinel-2 images.
Based on how many images are used for detecting clouds and cloud

shadows, we can categorize the algorithms into two groups: single-date
algorithms and multitemporal algorithms (Zhu et al., 2018). The

multitemporal algorithms are particularly popular after the free policy
of Landsat and Sentinel-2 (Frantz et al., 2015; Goodwin et al., 2013;
Hagolle et al., 2010; Wang et al., 1999; Zhu and Helmer, 2018; Zhu and
Woodcock, 2014). As the presence of cloud and cloud shadow will lead
to sudden changes in reflectance, the multitemporal algorithms can
identify clouds and cloud shadows by comparing the cloudy image with
a clear-sky reference image (or a model predicted clear-sky image).
Though the multitemporal algorithms are reported to have higher ac-
curacies than the single-date algorithms, they are more complicated to
use (require clear-sky reference images or high-density time series data)
and may cause problems in monitoring land change (Zhu and
Woodcock, 2014).
The single-date algorithms use one satellite image to detect clouds

(or cloud shadows), and they can be divided into two categories: phy-
sical-rule-based approaches and machine-learning-based approaches
(Zhu et al., 2018). The machine-learning-based approaches are
straightforward and simple to use. Based on the training samples of
clouds (or cloud shadows), we can classify every cloud (or cloud
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shadow) pixel based on a variety of classifiers, such as decision trees
(Hollstein et al., 2016; Potapov et al., 2011; Roy et al., 2010;
Scaramuzza et al., 2012), neural networks (Hughes and Hayes, 2014; Zi
and Xie, 2018), fuzzy models (Melesse and Jordan, 2002; Shao et al.,
2017), and support vector machines (Zhou et al., 2016). This kind of
methods require large training samples and may fail in certain unique
conditions without enough representative training samples (Huang
et al., 2010b; Hughes and Hayes, 2014).
The physical-rule-based approaches detect clouds based on the

physical characteristics of clouds, such as “white” (similar reflectance
across spectral bands), “bright” (high reflectance), “cold” (low tem-
perature), and “high” (high in elevation). Most of the algorithms are
using a constant or adaptive threshold in different spectral bands de-
rived from these physical rules to detect clouds (Choi and Bindschadler,
2004; Frantz et al., 2018; Huang et al., 2010b; Irish, 2000; Irish et al.,
2006; Louis et al., 2016; Müller-Wilm et al., 2018; Oishi et al., 2018;
Oreopoulos et al., 2011; Qiu et al., 2017; Sun et al., 2017; Vermote and
Saleous, 2007; Wilson and Oreopoulos, 2013; Zhu et al., 2015; Zhu and
Woodcock, 2012), in which some of them can also detect cloud sha-
dows by projecting their corresponding clouds onto land surfaces based
on the relative geometry among the sun, the satellite, and the clouds
(Huang et al., 2010b; Qiu et al., 2017; Vermote and Saleous, 2007; Zhu
et al., 2015; Zhu and Woodcock, 2012).
Among all these physical-rule-based algorithms, the Function of

mask (Fmask) algorithm is a widely used cloud and cloud shadow de-
tection algorithm for both Landsats 4–8 and Sentinel-2 images (Zhu
et al., 2015 Zhu and Woodcock, 2012). It detects clouds and cloud
shadows based on rules and statistics derived from their physical
characteristics. In particular, clouds are identified based on their
characteristics of “white”, “bright”, “cold”, and “high”, and cloud
shadows are identified by considering their “dark” characteristic and
based on the assumption that cloud shadows share similar shape with
the corresponding clouds and follow the cloud-shadow projection
geometry. This approach (Fmask version 3.3) has been adopted by U.S.
Geological Survey (USGS) to provide Quality Assessment (QA) band for
all Landsats 4–8 Collection 1 products due to its high overall accuracy
(Foga et al., 2017). Though Fmask has been successfully used in various

studies around the world (Claverie and Masek, 2017; Jönsson et al.,
2017; Li et al., 2015; Melaas et al., 2013; Pasquarella et al., 2018; Pekel
et al., 2016; Yan and Roy, 2014; Zhu et al., 2016), it has issues that
cannot be ignored.

1.1. The blindness of the geographic area

Fmask assumes we know nothing about the area covered by the
satellite images, which makes it easy to use but also incurs problems.
For example, Fmask detects clouds over land and water separately, but
land and water were simply separated by a few spectral tests. For op-
tically thick clouds, there is no way to tell what is underneath the
clouds based on the same satellite image, unless the land/water mask is
available ahead of time. Moreover, the previous version of Fmask uses
Brightness Temperature (BT) derived from thermal band to identify
clouds in Landsat data, which is problematic in mountainous areas,
where BT is often negatively related to elevation (Fig. 1c and d). Also,
the cirrus band, used for improving cirrus cloud detection in Fmask for
Landsat 8 and Sentinel-2 images, has the similar physical characteristic
that it can be influenced by magnitude of elevation and they are posi-
tively related (Fig. 1c and e). That is because the cirrus band is a water
vapor absorption band, and higher altitude corresponds to shorter
water vapor path, which results in higher Top Of Atmosphere (TOA)
reflectance (Gao et al., 1993). These impacts will easily cause com-
mission errors of clouds in high mountains (Fig. 1b), which cannot be
addressed unless other auxiliary data such as Digital Elevation Model
(DEM) is included to correct their impacts. Overall, auxiliary data such
as land/water mask and DEM can provide location-based prior-knowl-
edge for better detection of clouds. Recently, the Mountainous Fmask
(MFmask) algorithm tried to reduce the effect of elevation on the
thermal band based on DEMs (Qiu et al., 2017) but ignored its impact
on the cirrus band.

1.2. Lack of adequate cloud probabilities

Fmask calculates spectral variation, temperature, and cirrus cloud
probabilities to capture the “white”, “cold”, and “high” characteristics

Fig. 1. An example of Fmask 3.3 issue
caused by blindness of the geographic area.
(a) False color composite image (NIR, red,
and green bands). (b) Fmask results. (c)
DEM. (d) Brightness temperature. (e) Cirrus
band TOA reflectance. The results are from a
Landsat 8 image acquired on Jan. 9th, 2018
at Path 140/Row 41. The “clouds” in the red
dashed circle are the commission errors
from the Fmask 3.3 results. (For interpreta-
tion of the references to color in this figure
legend, the reader is referred to the web
version of this article.)
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of clouds over land, respectively (Fig. 2d, e, and f). This works well for
Landsat but is problematic for Sentinel-2 (Fig. 2b and c). As Sentinel-2
does not have the thermal band, the lack of temperature probability can
cause serious omission errors in cloud detection (Fig. 2c). Besides,
Fmask heavily depends on the cirrus band to detect cirrus clouds be-
cause of their high TOA reflectance, but certain atmospheric and sur-
face conditions (e.g., aerosol, dry vegetation, snow, and desert) can also
present high spatial variability in water vapor and have relatively high
cirrus band TOA reflectance, especially in dry environments (Bouffies
et al., 1997; Gao et al., 1993; Gao and Kaufman, 2003). Over-
dependence on the cirrus cloud probability may result in large com-
mission errors for the certain atmospheric and surface conditions.
Moreover, Fmask detects clouds using an image-based cloud probability
threshold, which was calibrated only based on Landsat 7 data in the
past (Zhu and Woodcock, 2012). It might not be the global optimal
threshold for different sensors, particularly when changes are made in
calculating cloud probability.

1.3. Confusion with bright and cold surfaces

Bright and cold surfaces (e.g., urban/built-up and snow/ice) can
have the same spectral signatures as clouds (Dozier, 1989; Frantz et al.,
2018; Oishi et al., 2018), which are easily confused with clouds in cloud
detection algorithms. Theoretically, most of clouds can be separated
from snow/ice because clouds generally have higher reflectance in
Shortwave Infrared (SWIR) band than snow/ice (Choi and
Bindschadler, 2004; Hall et al., 1995; Irish, 2000). However, some
clouds composed of ice crystals will have very similar SWIR reflectance
as snow/ice (Dozier, 1989). The thermal and cirrus bands are also
helpful for separating clouds and snow/ice, but for snow and ice at
specific locations (e.g., polar regions and high mountains), they may
show similar spectral patterns as clouds. Another typical kind of com-
mission error is noticeable in urban/built-up areas. Most urban/built-up
can be correctly separated from clouds in Landsat data using the
thermal band because they are usually much warmer than clouds
(Landsberg, 1981). However, some urban/built-up objects (e.g., cool

roof) can have temperatures as cold as or even colder than clouds
(Akbari et al., 2001), which makes them almost impossible to separate
from clouds in the spectral domain. This issue is even worse for Sen-
tinel-2 data, as without the thermal band, urban/built-up areas are
easily confused with clouds even if they are relatively warmer than the
clouds. Those errors can cause severe problems for time series analysis,
as if we constantly misclassify snow/ice or urban/built-up as cloud, we
will have no or very few clear observations to use for these locations
(Fig. 3).
In this study, we will present Fmask 4.0 algorithm mainly by pro-

viding solutions for the above three major problems as follows: (1)
integrate auxiliary data from global water mask and DEM to improve
cloud detection (Section 3.1); (2) create new cloud probabilities and
calibrate new global optimal probability thresholds for different sensors
(Section 3.2); and (3) combine the spectral and contextual features to
reduce false positive errors in cloud detection (Section 3.3).

2. Data

2.1. Landsat and Sentinel-2 data

Major inputs of Fmask 4.0 include TOA reflectance and/or BT from
Landsats 4–8 and Sentinel-2 (Table 1). As all the spectral bands in
Landsats 4–8 data are provided at a spatial resolution of 30-meter,
Fmask 4.0 creates cloud and cloud shadow masks at the same 30-meter
spatial resolution. For Sentinel-2 data, three different spatial resolutions
of 10-, 20-, and 60-meter are provided for different spectral bands in a
tile of 100× 100 km2. To keep a similar cloud and cloud shadow mask
spatial resolution as Landsat imagery and considering Sentinel-2's
spatial resolution (many spectral bands are at 20-meter spatial resolu-
tion), Fmask 4.0 creates cloud and cloud shadow masks at a 20-meter
resolution for Sentinel-2. The Sentinel-2 spectral bands with 10- and 60-
meter spatial resolutions will be resampled to 20-meter, in which the
10-meter bands are based on a pixel aggregation method and the 60-
meter bands are based on a nearest sampling approach. For the original
20-meter bands, we keep them the same.

Fig. 2. An example of Fmask 3.3 issue
caused inadequate cloud probabilities. (a)
False color composite image (NIR, red, and
green bands). (b) Fmask results using the
thermal band. (c) Fmask results without
using the thermal band for the corre-
sponding Sentinel-2 image. (d) Spectral
variation probability. (e) Temperature
probability. (f) Cirrus cloud probability.
The results are from a Landsat 8 image ac-
quired on Jan. 17th, 2016 at Path 199/Row
29. The red arrows point out the location of
omission errors that are caused by lack of
thermal band. (For interpretation of the
references to color in this figure legend, the
reader is referred to the web version of this
article.)
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2.2. Auxiliary data

Global Surface Water Occurrence (GSWO), DEM, and DEM deriva-
tives (slope and aspect) are the auxiliary data used in Fmask 4.0. The
GSWO dataset provides terrestrial water dynamics (the intra- and inter-
annual variability and change) over long time periods at a 30-meter
resolution based on a 32-year Landsat record (Pekel et al., 2016). The
dataset creates water occurrence for each pixel, where 0% indicates
permanent land and 100% indicates permanent water. For DEM data,
Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) DEM Version 2 was used for algorithm development because
of its global availability and sufficient accuracy (Nikolakopoulos et al.,
2006; Tachikawa et al., 2011). ASTER DEM data are provided with 1
arc-second resolution (approximately 30m), which can generate the
corresponding slope and aspect with the aid of TopoToolbox
(Schwanghart and Scherler, 2014).

2.3. Training and validation data

2.3.1. Training data
Manually interpreted cloud and cloud shadow reference masks de-

rived from “L8 Biome” dataset will be used as the fundaments to de-
velop Fmask 4.0 (Foga et al., 2017). “L8 Biome” dataset includes a total
of 96 Landsat 8 images covering different parts of the world and with

different cloud cover conditions. Those images were selected using a
biome-based stratified sampling approach, covering urban, barren,
forest, shrubland, grass/cropland, snow/ice, wetlands, and water. The
masks for each image were produced by multiple visual criteria (e.g.,
brightness, shape, and texture) with various band combinations.
We examined this dataset carefully and excluded six images with

low accuracies, which give us 90 Landsat 8 images (Fig. 4; Table S1).
Among the 90 Landsat 8 images, we selected 17 images (mostly in the
polar regions) which only contain snow/ice or clouds to build the
routine to separate snow/ice and clouds (Fig. 4; Table S1). As Landsat 8
has all Landsats 4–7 bands and most of Sentinel-2 bands used in Fmask
4.0, we used Landsat 8 data to simulate Landsats 4–7 and Sentinel-2
data and train the algorithm based on the same reference dataset de-
rived from Landsat 8. As Sentinel-2 images have different spatial re-
solution and spatial extent compared with Landsat 8 images, we clipped
Landsat 8 images into the same 100× 100 km2 and resampled to the
20-meter resolution. All training data will be used as the basis for de-
velopment and calibration of Fmask 4.0.

2.3.2. Validation data
To quantitatively assess Fmask 4.0 accuracy for Landsat 7 (re-

presenting Landsats 4–7 considering of their very similar spectral
bands), Landsat 8, and Sentinel-2 respectively, we randomly selected
two locations from each of the eight land cover types of the “L8 Biome”

Fig. 3. An example of Fmask 3.3 issue
caused by consistent commission errors
of clouds from bright and cold surfaces.
(a) False color composite image (NIR,
red, and green bands) for the Landsat 8
image acquired on Jul. 24th, 2016. (b)
Number of total clear observations
based on Fmask 3.3 statistics from 91
Landsats 7–8 images. (c) Number of
total clear observations based on Fmask
3.3 statistics from 112 Sentinel-2
images. Note the stripes in Fig. 3b are
caused by the failure of Landsat 7 scan
line corrector after May 31st, 2003.
The red arrows indicate the places
where urban/built-up pixels are mis-
identified as clouds consistently, which

greatly reduced the number of available clear observations. The statistics are from all available Landsat images (Path 41/Row 37) and Sentinel-2 images (Tile 11SLT)
collected between January 2016 and December 2017 over the Los Angeles area (18× 18 km2). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 1
The spectral bands of Landsats 4–8 and Sentinel-2 data. Bands used in Fmask 4.0 are highlighted in bold letters. The NIR band in this study indicates Band 4 for
Landsats 4–7, Band 5 for Landsat 8, and Band 8a for Sentinel-2 if not otherwise specified.

Band
Name

Landsats 4–5
TM Bands (μm)

Landsat 7
ETM+ Bands (μm)

Landsat 8
OLI/TIRS Bands (μm)

Sentinel-2
MSI Bands (μm)

\ \ \ Band 1 (0.435–0.451) Band 1 (0.433–0.453)
Blue Band 1 (0.45–0.52) Band 1 (0.45–0.52) Band 2 (0.452–0.512) Band 2 (0.458–0.523)
Green Band 2 (0.52–0.60) Band 2 (0.52–0.60) Band 3 (0.533–0.590) Band 3 (0.543–0.578)
Red Band 3 (0.63–0.69) Band 3 (0.63–0.69) Band 4 (0.636–0.673) Band 4 (0.650–0.680)
\ \ \ \ Band 5 (0.698–0.713)

\ \ \ Band 6 (0. 733–0. 748)
VRE3 \ \ \ Band 7 (0.765–0.785)
Wide NIR Band 4 (0.76–0.90) Band 4 (0.77–0.90) \ Band 8 (0.785–0.900)
Narrow NIR \ \ Band 5 (0.851–0.879) Band 8a (0.855–0.875)
\ \ \ \ Band 9 (0.930–0.950)
Cirrus \ \ Band 9 (1.363–1.384) Band 10 (1.365–1.385)
SWIR1 Band 5 (1.55–1.75) Band 5 (1.55–1.75) Band 6 (1.566–1.651) Band 11 (1.565–1.655)
SWIR2 Band 7 (2.08–2.35) Band 7 (2.09–2.35) Band 7 (2.107–2.294) Band 12 (2.100–2.280)
Thermal Band 6 (10.40–12.50) Band 6 (10.40–12.50) Band 10 (10.60–11.19) \
\ \ \ Band 11 (11.50–12.51) \
\ Band 8 (0.52–0.90) Band 8 (0.503–0.676) \

TM: Thematic Mapper; ETM+: Enhanced Thematic Mapper Plus; OLI/TIRS: Operational Land Imager/Thermal Infrared Sensor; MSI: Multispectral Instrument; VRE:
Vegetation Red Edge; NIR: Near Infrared; SWIR: Shortwave Infrared.
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dataset (Foga et al., 2017), and from each location we randomly se-
lected one image for each sensor type. This will give us 16 validation
images for each sensor (Fig. 4; Table S2-S4). For each image, a total of
100 pixels were selected based on the simple random sampling. The
interpretation was carefully made to determine their true categories
(e.g., cloud, cloud shadow, or clear) by looking at the original satellite
images. Sometimes it is hard to make a confident interpretation for
certain samples, especially for optically thin clouds and their shadows
(hard to define their boundaries). In this case, we excluded those
samples in our accuracy assessment and thus there are a total of 1553
reference samples for Landsats 4–7 (719 cloud samples, 62 cloud
shadow samples, and 772 clear-sky samples), 1552 reference samples
for Landsat 8 (686 cloud samples, 72 cloud shadow samples, and 794
clear-sky samples), and 1527 reference samples for Sentinel-2 (724
cloud samples, 56 cloud shadow samples, 747 clear-sky samples).

3. Fmask 4.0

The overall flowchart of Fmask 4.0 is illustrated in Fig. 5. As the
previous Fmask algorithms have been well documented (Qiu et al.,
2017; Zhu et al., 2015; Zhu and Woodcock, 2012), we mainly focus on
the new methodologies used for solving the problems we have men-
tioned above (Section 1). Note that the Fmask 4.0 algorithm described
here is mainly focused on cloud detection, and cloud shadow detection
of Fmask 4.0 is directly inherited from MFmask (Qiu et al., 2017).

3.1. Auxiliary data integration

The auxiliary data (e.g., GSWO, DEM, slope, and aspect) are es-
sential for Fmask 4.0. Previously, DEM, slope, and aspect have been
applied to improve cloud and cloud shadow detection by normalizing
thermal band, removing terrain shadows, and revising cloud shadow
shape over slope-side, which are particularly helpful in mountainous
areas (Qiu et al., 2017). Besides these enhancements, Fmask 4.0 will
include GSWO to better separate land and water (Section 3.1.1). DEM
will also be applied to normalize the cirrus band obtained by Landsat 8
and Sentinel-2 to reduce its variations along the elevations (Section

3.1.2). Finally, we will down-scale all auxiliary data and test alternative
options of auxiliary data to find a balance between accuracy and effi-
ciency (Section 3.1.3).

3.1.1. Better separation of land and water
Fmask applies different approaches for detecting clouds over land

and water; therefore, it is essential to know the underlying surface types
(land or water) before cloud detection is applied. Water pixel was in-
itially determined only using Normalized Difference Vegetation Index
(NDVI) and Near Infrared (NIR) band (hereafter called “spectrally de-
rived water”); and the remaining pixels were grouped into land pixels
(Zhu and Woodcock, 2012). This approach can separate land and water
pixels well when they are clear-sky or thin cloud pixels, but will not
work for places covered by thick clouds.

= < <
< < >

=

Water Test
NDVI and Band NIR or
NDVI and Band NIR or GSWO O and snow ice

false

( 0.01 0.11)
( 0.1 0.05) ( /

)
water

(1)

where,

=O 17.5 percentile of spectrally derived water pixels' occurrence 5%
.

water

Fmask 4.0 integrates GSWO data into the water test to better se-
parate land and water by Eq. (1), mainly for places covered by thick
clouds. GSWO can provide water occurrence from 0% to 100% for each
pixel. Considering water occurrence varies in different areas, we used
the spectrally derived water pixels to calculate an image-based water
occurrence threshold to extract all water from GSWO data. The 17.5
percentile (lower level) is inherited from the original Fmask algorithm
(Zhu and Woodcock, 2012) to exclude commission errors from the
spectrally derived water pixels, and 5% can tolerate the uncertainty of
the GSWO data. At the same time, snow/ice pixels need to be excluded
because GSWO will also include them as water. This approach can se-
parate land and water better even with heavy cloud coverage.

Fig. 4. Global distribution of training and validation data used in this study. The land cover background is derived from Global Land Cover Characterization (GLCC)
product (Loveland et al., 2000).
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3.1.2. Normalization of cirrus band (for Landsat 8 and Sentinel-2)
Due to the strong water vapor absorption in the lower atmosphere,

the cirrus band is particularly useful to detect cirrus clouds that are
usually high in elevation (Gao et al., 1993; Gao and Kaufman, 1995).
However, elevation variations can also impact on this band as places
with high elevations will have higher cirrus band TOA reflectance due
to the shorter water vapor path (Fig. 6a).
To reduce the elevation-induced variability of cirrus band TOA, we

normalized the cirrus band based on DEM in Fmask 4.0. The normal-
ization is based on dark cirrus band samples extracted from isometric
zones for every 100-meter elevation, which are determined by the two
percentiles of the clear-sky pixels' cirrus band TOA reflectance in each
zone. The clear-sky pixels are non-Potential Cloud Pixels (non-PCPs)
identified by several spectral tests in Fmask (Zhu and Woodcock, 2012).
Assuming these dark cirrus band samples are only impacted by the
different water vapor absorption paths caused by elevation change, we
subtracted the dark cirrus band sample's TOA reflectance from each
pixel's cirrus band TOA reflectance within each isometric zone. This
normalization can greatly reduce the variability of cirrus band caused

by elevation change, making cirrus band TOA reflectance only re-
sponsible for the presence of cirrus clouds (Fig. 6b). Note that if the
image is full of clouds and therefore does not have enough clear-sky
pixels for further analysis, Fmask 4.0 will directly adopt the original
Fmask approach without applying this normalization process.

3.1.3. Auxiliary data upscale to improve efficiency
We developed our algorithm based on auxiliary data from 30-meter

GSWO and 30-meter ASTER DEM. However, considering GSWO and
DEM are mainly used to provide a regional statistic, it is possible that
coarser spatial resolution of these auxiliary data may achieve similar
accuracies. This is particularly important because of the large compu-
tation/storage and extensive efforts involved in manually downloading,
mosaicking, projecting, and resampling all auxiliary data to the same
resolution and extent of remotely sensed imagery.
Therefore, we did a sensitivity analysis by examining the relation-

ship between auxiliary data spatial resolution and detection accuracy
(Fig. 7). When the spatial resolution of the DEM varies from 30 to
1950m, the average cloud detection overall accuracy decreased very

Fig. 5. Flowchart of Fmask 4.0. GSWO: Global Surface Water Occurrence; DEM: Digital Elevation Model; BT: Brightness Temperature; PCPs: Potential Cloud Pixels.
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slightly (approximately 0.005%), and the average omission error in
cloud shadow detection increased marginally (< 0.05%). Note that the
cloud detection overall accuracy is calculated as the ratio of the
agreement between manual cloud mask and Fmask cloud results to the
total number of pixels; and the cloud shadow omission error is calcu-
lated as the ratio of the number of omitted cloud shadow pixels to the
total number of pixels. We only focused on the omission errors for cloud
shadows because the commission errors are generally less of an issue
because of the relatively small sizes of cloud shadows (Qiu et al., 2017;
Zhu and Woodcock, 2012). Considering the small accuracy differences
when the spatial resolution of the DEM changes, we think DEM with
1 km would generally work for our purpose. In this case, we will be able
to use the USGS Global 30 Arc-Second Elevation (GTOPO30) data as the
default data source for DEM auxiliary data. On the other hand, the
responses of different spatial resolutions of GSWO indicate it is im-
portant to maintain the high spatial resolution of this variable

(accuracy drops dramatically with the increase of spatial resolution of
GSWO). To balance accuracy and efficiency, we recommend resampling
the GSWO into 150m, which can reach a similar detection accuracy
and reduce 96% volume of the GSWO auxiliary data.

3.2. New cloud probabilities

Cloud probabilities are the core components of Fmask, and Fmask
proposed different probabilities over land and water, respectively.
Fmask 4.0 still uses the original approach for water (Zhu and
Woodcock, 2012), but mainly improves cloud probabilities over land
that are originally consisted of spectral variation, temperature, and/or
cirrus cloud probabilities. The previous version of Fmask calculates the
spectral variation probability from visible to SWIR bands to capture the
“white” feature of cloud, but ignored the contrast between NIR and
SWIR bands; therefore, we need to modify the spectral variability
probability by adding this unique contrast test to further exclude the
commission errors of clouds from the specific surfaces with significant
NIR-SWIR contrasts (such as built-up and barren pixels) (Section 3.2.1).
Moreover, Fmask calculates the temperature probability based on the
thermal band for capturing the “cold” feature of the cloud. However,
Sentinel-2 does not have the thermal band. Therefore, we need to in-
vent a new cloud probability to replace this important probability
(Section 3.2.2). Additionally, the cirrus cloud probability can be cal-
culated based on the cirrus band from Landsat 8 and Sentinel-2, but the
previous Fmask weighted heavily on the cirrus cloud probability, and
cloud detection may sometimes be dominated by this probability.
Therefore, we will adjust the new cloud probabilities by reducing the
weight of cirrus cloud probability (Section 3.2.3). Finally, considering
many improvements have been made in Fmask 4.0, the original cloud
probability thresholds are also outdated. We will need to calibrate the
global optimal cloud probability thresholds for different sensors for
Fmask 4.0 (Section 3.2.4).

3.2.1. Spectral variation probability
While land surface has large spectral variability, clouds usually

present very consistent spectral reflectance across the optical bands.
Besides NDVI, Normalized Difference Snow Index (NDSI), and
Whiteness index, Fmask 4.0 adds Normalized Difference Built-up Index
(NDBI) to calculate the spectral variation probability over land (Zha
et al., 2003). The NDVI and NDSI can be used to capture the spectral
variability in NIR/red, and SWIR/green dimensions. The whiteness is
calculated to capture the variability in the blue, red, and green bands
(Zhu and Woodcock, 2012). By including NDBI, Fmask 4.0 can capture

Fig. 6. Normalization of the cirrus band for a Sentinel-2A image acquired on May 7th, 2016 at Tile 29RNQ. (a) Original cirrus band TOA reflectance versus elevation.
(b) Normalized cirrus band TOA reflectance versus elevation.

Fig. 7. Effects of the spatial resolution of DEM and GSWO on cloud and cloud
shadow detection accuracies based on 90 Landsat 8 images.
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the spectral variability in NIR/SWIR dimension. This is helpful to ex-
clude built-up and barren in cloud detection because built-up normally
shows positive NDBI, but clouds are the opposite (Zha et al., 2003).

3.2.2. HOT-based cloud probability (for Sentinel-2)
As Sentinel-2 does not have the thermal band, the previous version

of Fmask only calculates the spectral variation probability and the
cirrus cloud probability to capture the “white” and “high” features of
cloud (Zhu et al., 2015). For low altitude clouds, however, the cirrus
cloud probability will be almost the same as that for the Earth's surface,
resulting in large omission errors. To solve this problem, a new Haze
Optimized Transformation (HOT)-based cloud probability is calculated
to replace the temperature probability for Sentinel-2 data.
HOTwas originally proposed by Zhang et al. (2002) because of the high

correlation between blue and red bands for most clear-sky land surfaces. It
is calculated based on the blue and red TOA reflectance (Eq. (2)), and the
original Fmask algorithm uses HOT to help to extract PCPs. Except for very
bright land surfaces, such as urban and snow/ice, the higher the HOT
values, the more likely they are clouds. Therefore, we normalized the HOT
values based on the clear-sky land pixels to convert them into a HOT-based
cloud probability (lHOT). Assuming the HOT values of clear-sky pixels
differ within 0.04, Fmask 4.0 makes this normalization process similar as
how the temperature probability is calculated based on the thermal band
(Eq. (3)) (Zhu and Woodcock, 2012). Note the 17.5 and 82.5 percentiles
are also inherited from the original Fmask and can provide the HOT in-
terval for clear-sky land pixels (Zhu and Woodcock, 2012). This new cloud
probability is only used for Sentinel-2 data and is particularly helpful to

capture the low altitude clouds.

=HOT Band Blue–0.5 Band Red–0.08 (2)

=
+

lHOT HOT–(HOT –0.04)
(HOT 0.04)–(HOT –0.04)

low

high low (3)

where,

=(HOT , HOT ) (17.5, 82.5) percentile of clear sky land pixels' HOT.low high

3.2.3. Combination of cloud probabilities
Fmask 4.0 calculates final cloud probability by combining different

probabilities for Landsats 4–7, Landsat 8, and Sentinel-2 respectively
(Table 2). For Landsats 4–7, Fmask 4.0 computes the combined cloud
probability for land and water the same as the previous version of Fmask
algorithm (Zhu and Woodcock, 2012), besides the thermal band will be
normalized based on DEMs (Qiu et al., 2017). For Landsat 8, Fmask 4.0
adds a weighted (0.3) cirrus cloud probability to the same cloud prob-
abilities designed for Landsats 4–7. For Sentinel-2, Fmask 4.0 uses the HOT-
based cloud probability instead of the temperature probability for land
areas plus another weighted (0.5) cirrus cloud probability. For water areas,
the absence of temperature probability has limited effects on the cloud
detection accuracy. Therefore, Fmask 4.0 computes the combined cloud
probability over water by adding the brightness probability with the same
weighted cirrus cloud probability for Sentinel-2 data.
In Fmask 4.0, we reduced the weight of cirrus cloud probability for

Landsat 8 and Sentinel-2 due to the fact that some non-cloud objects, such
as haze, fog, aerosol, dry vegetation, snow, and desert, can also have high
cirrus band TOA reflectance especially in dry environments (Bouffies et al.,
1997; Gao et al., 1993; Gao and Kaufman, 2003). As Fig. 8 shows, the full
inclusion of the cirrus cloud probability (weighted 100%) increased the
cloud probability for cloud pixels considerably (especially for high cirrus
clouds) (See right dashed rectangle in Fig. 8b), but also influenced the cloud
probability for clear-sky surfaces (See left dashed rectangle in Fig. 8b). Our
goal is to separate the clouds and clear-sky surfaces based on the cloud
probability layer, and the less the overlap between the distribution of cloud
and clear-sky surface in cloud probability layer, the better the separability of
the cloud probability. It is obvious that if we give 100% weight in cirrus
cloud probability, higher overlap is expected, and less separability is pro-
vided in the cloud probability layer. Thus, we adjusted the weight of cirrus
cloud probability and chose the one with the minimum overlap using the 90
reference images (Fig. 9). Based on the sensitivity analysis, the optimal
weight of cirrus cloud probability is 0.3 for Landsat 8 and 0.5 for Sentinel-2.
Note that due to the lack of a thermal band, Sentinel-2 has a higher weight
than Landsat 8 (relies on cirrus band more).

Table 2
Computations of cloud probability in Fmask 4.0 for Landsats 4–7, Landsat 8,
and Sentinel-2.

Data type Cloud probability

Land Water

Landsats 4–7 lVar · lTemp wTemp · wBright
Landsat 8 lVar · lTemp+ 0.3 · Cir wTemp · wBright+ 0.3 · Cir
Sentinel-2 lVar · lHOT+0.5 · Cir wBright+ 0.5 · Cir

Note that lVar presents spectral variability probability for land (Section 3.2.1);
lTemp presents temperature probability for land (Qiu et al., 2017); lHOT pre-
sents HOT-based cloud probability for land (Section 3.2.2); wTemp presents
temperature probability for water (Zhu and Woodcock, 2012); wBright presents
brightness probability for water (Zhu and Woodcock, 2012); Cir presents cirrus
cloud probability (Zhu et al., 2015).

Fig. 8. Distributions of cloud probability without cirrus cloud probability (Fig. 8a) and with 100% cirrus cloud probability (Fig. 8b) based on manually interpreted
clouds for a Landsat 8 image acquired on May 21st, 2014 at Path 229/Row 57.
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3.2.4. New cloud probability thresholds
The previous version of Fmask extracts clouds from the cloud

probability layer using an image-based threshold that is the upper level
(82.5 percentile) of clear-sky pixels' probability plus a constant of 0.2
(Zhu and Woodcock, 2012). The 0.2 was originally designed for
Landsats 4–7. However, the cloud probability in Fmask 4.0 has already
changed by applying BT normalization, cirrus normalization, HOT-
based cloud probability, and weighted cirrus cloud probability. There-
fore, we re-calibrated cloud probability thresholds for Fmask 4.0 based
on the sensitivity analysis against the 90 reference images (Fig. 10). We
found the optimal threshold (highest overall accuracy) for Landsats 4–7
is 0.1, for Landsat 8 is 0.175, and for Sentinel-2 is 0.2, and they will
replace the constant value of 0.2 in the original Fmask algorithm.

3.3. Spectral-contextual features

Snow/ice and urban/built-up are easily confused with clouds be-
cause of their similar spectral signatures. Here, we propose to combine
spectral and contextual dimensions to develop a snow/cloud separation
index to better determine snow/ice pixels (Section 3.3.1), and apply a
morphology method to remove the remaining commission errors in-
duced by urban/built-up and mountain snow/ice (Section 3.3.2).

3.3.1. Separate snow/ice from clouds (in polar regions)
Fmask selects PCPs based on several spectral tests and uses the rest

of non-PCPs to calculate cloud probability, in which snow/ice pixels are
excluded using a fixed NDSI threshold (0.8) (Zhu and Woodcock, 2012).
This process tends to pick most of the snow/ice pixels as PCP since the
NDSI threshold to distinguish clouds and snow/ice would be variable
for the different conditions (e.g., atmospheric conditions and grain size
of snow) (Choi and Bindschadler, 2004). It will cause the rest of non-
PCPs not representative of the land surface characteristics, especially
for snow-covered images in polar regions. What is more, the NDSI va-
lues of clouds and snow/ice can have a large overlap in these areas,
which makes them spectrally inseparable.
Fortunately, clouds and snow/ice are usually quite different in

texture, in which places that covered by large areas of snow/ice are
smoother than places covered by clouds (Coakley and Bretherton, 1982;
Six et al., 2004). As the green band is less sensitive to influences from
atmospheric conditions and grain size of snow/ice (Dozier, 1984,
1989), we can compute a Spectral-Contextual Snow Index (SCSI) by
integrating the local Standard Deviation (SD) of green band and NDSI
(Eq. (4)). SCSI can distinguish homogenous snow/ice from clouds be-
cause they usually have higher NDSI and smoother texture than clouds.
A pixel would be more likely to be snow/ice when its SCSI is close to 0.

=SCSI SD (Band Green) (1 NDSI)n n (4)

where, n represents the local window size in kilometers.
To determine the optimal window size of SCSI, we calculated SCSI

distributions of clouds and snow/ice for 17 reference images only covered
by snow/ice and clouds (Fig. 4; Table S1). We can calculate SCSI dis-
tribution of clouds and snow/ice for these reference images based on dif-
ferent window sizes of SCSI, and the best window size should correspond to
the least overlap. Fig. 11 shows that the overlap decreases continuously
along with the increment of window size. This means that a larger window
can result in a better ability to distinguish between clouds and snow/ice,
but this also leads to more computation. To balance efficiency and accu-
racy, we selected a window size of 10 km (SCSI10) for Fmask 4.0.
A pixel is classified as snow/ice if its SCSI10 is less than 0.0009, and

will be used as non-PCPs for subsequent statistical analyses (e.g., cloud
probability calculation). The threshold of 0.0009 was determined by a
sensitivity analysis, where we let SCSI10 vary from 0 to 0.002 (at
0.00005 intervals) and examine how many snow/ice and cloud pixels
can be correctly identified based on the same 17 snow/ice and cloud
masks (Fig. 12). It is clear that when SCSI10 is less than 0.0009, almost

Fig. 9. Selection of the cirrus cloud probability weight for Landsat 8 and Sentinel-2
images based on 90 reference images. Note that the interval is 0.1 and the minimum
overlap is achieved at the weight of 0.3 for Landsat 8 and 0.5 for Sentinel-2.

Fig. 10. Selection of optimal thresholds for Landsats 4–7, Landsat 8, and
Sentinel-2 images based on 90 reference images.

Fig. 11. Window size selection of SCSI based on 17 snow/ice and cloud covered
Landsat 8 images. Note that a window size of 10 km (333 pixels for Landsat and
501 pixels for Sentinel-2) appears to be good enough to capture the variation of
most clouds. SCSI: Spectral-Contextual Snow Index.
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all pixels are snow, and it is rare to include any cloud pixels. Note that
this new SCSI works well for places that covered by large areas of
smooth snow/ice (common in polar regions) and may have limited

separability for mountain snow/ice or snow-covered forest areas.

3.3.2. Separate clouds from bright surfaces (urban/built-up and snow/ice)
This section is to reduce false positive errors caused by the re-

maining bright surfaces, such as urban/built-up and mountain snow/
ice, in Fmask cloud detection results. Since urban/built-up and snow/
ice have their unique spectral features, we can use simple spectral tests
to identify all Potential False Positive Cloud Pixels (PFPCPs) that in-
clude these misidentified bright surfaces. At the same time, these bright
surfaces normally show isolation, line, rectangle, and sharp shapes,
which have an extremely large perimeter-to-area ratio, but clouds are
usually the opposite. Based on this spectral-contextual difference, we
can use a morphology approach to separate clouds from bright surfaces.

Extraction of potential false positive cloud pixels
Urban/built-up presents a unique spectral response that the re-

flectance in SWIR band is higher than NIR band (Zha et al., 2003), but
clouds are the opposite (Irish, 2000). We can extract urban/built-up
pixels by combining NDBI>0 and NDBI>NDVI (Zha et al., 2003), in
which NDVI is to exclude the scenarios that the vegetations with de-
creased leaf water content may have higher reflectance in SWIR than in
NIR band (Cibula et al., 1992; Xu, 2007). Later, we used a line en-
hancement operator for the NDBI layer (line-enhanced NDBI) to further
highlight the urban/built-up area and depress the non-urban/built-up,
as urban/built-up area contains lots of linear structures (e.g., roads)

Fig. 13. Four line-enhancement kernels which respond maximally to horizontal, vertical, and oblique (+45 and−45 degrees) lines.

Fig. 14. Comparisons of line-enhanced
NDBI and NDBI to extract urban/built-up.
(a) Landsat 8 image located in San
Francisco, U.S. acquired on Nov. 5th, 2017
at Path 44/Row 34 (15×15 km2). (b)
Landsat 8 image located in the Nubian
Desert, Sudan acquired on Aug. 28th, 2017
at Path 178/Row 46 (15×15 km2). The
reference images in a and b are shown with
NIR, red, and green bands composited. (For
interpretation of the references to color in
this figure legend, the reader is referred to
the web version of this article.)

Fig. 12. Selection of SCSI10 threshold based on 17 Landsat 8 reference images
covered snow/ice and clouds. Note that a threshold of 0.0009 can correctly
select approximate 5% snow/ice but almost none clouds.
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that usually appear as bright lines on a darker background (e.g., ve-
getations) (Guindon et al., 2004). This operator applies four templates
corresponding to four directions (Fig. 13) to filter each pixel and retains
the maximum response. In this way, pixels with large NDBI value, such
as desert, will be removed, but urban/built-up features (especial for
roads) remained. Fig. 14 illustrates the results for two subsets of
Landsat 8 images acquired from urban/built-up and desert areas, in-
dicating the line-enhanced NDBI can better extract the urban/built-up
pixels and avoid non-urban/built-up (e.g., desert) at the same time.
The line-enhanced NDBI can capture most of the urban/built-up pixels,

but may also include some cloud pixels. As clouds are generally colder than
pixels (Landsberg, 1981), we used an image-based threshold in the thermal
bands for all Landsats 4–8 images to further exclude these cloud pixels. The
threshold can be automatically determined using Otsu's method (Otsu,
1979). For Sentinel-2, we excluded the cloud pixels based on a newly de-
veloped Cloud Displacement Index (CDI), which improves cloud detection
based on the view angle parallax of three Sentinel-2 bands (Band 7, 8, and
8a) (Frantz et al., 2018). The CDI values of most clouds are less than −0.5
but considering densely packed buildings and slight across-track parallax
can also have lower CDI values (Frantz et al., 2018), we decreased the CDI
threshold to −0.8 to exclude the remaining cloud pixels for Sentinel-2. As
commission errors are also found near urban/built-up areas, we dilated
urban/built-up pixels with a window of 500m in 8 connected directions.
The false positive clouds are also observed in areas of mountain

snow/ice. The potential snow/ice pixels can be determined by fol-
lowing the initial Fmask test, in which mountain snow/ice pixels can be
further determined when a pixel's slope is larger than 20 degrees, as
most mountainous regions have slopes beyond this threshold (Burbank
et al., 1996). As commission errors are also found near areas of
mountain snow/ice, we dilated the mountain snow/ice pixels with a
window of 500m in 8 connected directions. Snow/ice pixels in flat
areas (no dilation) are also included in the final PFPCPs.

A morphology-based elimination process
After identification of all PFPCPs, we will perform a morphology pro-

cess for them that can efficiently eliminate (or at least reduce) the bright
surfaces characterized by large perimeter-to-area ratio. The fundamental
operators in morphology are erosion and dilation, which are related di-
rectly to object shape (Haralick et al., 1987). As urban/built-up and
mountain snow/ice are usually composed of isolated pixels, lines of pixels,
and rectangles of pixels, they will be removed by erosion with a disk-
shaped structuring element (Fig. 15). This type of erosion generally cannot
remove entire clouds because of their low perimeter-to-area ratio shape
and relatively large size, but this will change cloud boundaries. To recover
the cloud shape, Fmask 4.0 dilates the remaining pixels with the same
structure element twice (Fig. 15). A single dilation often may recover the
original shape of many “round” clouds, but may not work for clouds with
sharp boundary. Therefore, Fmask 4.0 makes another dilation to recover

original cloud shape as much as possible. The dilated pixels cannot exceed
the initial extent of clouds as we do not want to increase commission errors.
Based on the sensitivity analysis against 90 reference images, the optimal
radius of the structuring element is 150m (5 pixels) for Landsats 4–7 and
90m (3 pixels) for Landsat 8, and 90m (5 pixels) for Sentinel-2 (same with
Landsat 8) (Fig. 16). Note that the radius used for Landsats 4–7 is larger
than Landsat 8 mainly because of the more commission errors caused by
the lower cloud probability threshold and the lack of the cirrus band. This
morphology-based process can eliminate most of the false positive cloud
errors in Landsat data, but less helpful for Sentinel-2 data mainly because
the lack of thermal band would result in more commission errors of clouds
from the bright surfaces (Fig. 3). Therefore, for Sentinel-2 images, Fmask
4.0 further removes small objects (<10,000 pixels) in PFPCPs based on the
minimum CDI value in each object, and if its minimum CDI is larger than
−0.5, it is excluded from the final cloud results.

4. Results

Like we have done previously (Qiu et al., 2017; Zhu et al., 2015; Zhu
and Woodcock, 2012), we evaluate our cloud and cloud shadow results by
dilating 3 pixels for cloud shadow pixels, but no dilation for cloud pixels.

4.1. Results for Landsats 4–8

We compared the results between Fmask 4.0 and Fmask 3.3. As the
visual comparisons in Fig. 17 show, Fmask 4.0 performed better in

Fig. 16. Selection of the radius of structuring element. The radius of 150m
achieves the highest overall cloud accuracy for Landsats 4–7 and 90m for
Landsat 8 based on 90 reference images.

Fig. 15. Example of erosion and dilation operations with a radius of 3 pixels. (a) Potential false positive cloud layer. (b) Remaining pixels after erosion. (c) Cloud recovered by
dilation.
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detecting clouds and cloud shadows than Fmask 3.3 did for Landsats
4–8 images. Fig. 17a is a Landsat 7 image located in Alaska Gulf where
there are well-behaved clouds over a large area of water region. Fmask
4.0 successfully identified the clouds (especial thin clouds) over water
that Fmask 3.3 missed. Fig. 17b shows the results of a Landsat 8 image
located in Tibetan Plateau with low vegetation coverage and large to-
pographic differences. Fmask 3.3 cloud mask showed large commission

errors in cloud detection and failed to identify the associated cloud
shadows. Nevertheless, Fmask 4.0 detected the clouds and their sha-
dows successfully. Fig. 17c is a Landsat 8 image acquired from Green-
land where thick and thin clouds over very bright snow/ice sheets.
Fmask 3.3 incorrectly identified the entire image as clouds, but Fmask
4.0 successfully separated clouds from the bright snow/ice. Fig. 17d is a
Landsat 8 image acquired from Mount Qomolangma with large

Fig. 17. Comparisons of Fmask 4.0 and Fmask 3.3 for five Landsat images. (a) Landsat 7 image located in Alaska Gulf, U.S. acquired on Mar. 28th, 2002 at Path 65/Row 18.
(b) Landsat 8 image located in Tibetan Plateau, China acquired on May 16th, 2016 at Path 143/Row 38. (c) Landsat 8 image located in Greenland, Denmark acquired on May
27th, 2014 at Path 6/Row 10. (d) Landsat 8 image located in Mount Qomolangma, China acquired on Oct. 2nd, 2016 at Path 140/Row 40. (e) Landsat 8 image located in Los
Angeles, U.S. acquired on Dec. 23rd, 2013 at Path 41/Row 37. The upper images in a, b, c, and d are enlargements of the lower entire images with a size of 60×60km2. The
upper images in e are enlargements of the lower entire images with a size of 15×15km2. The reference images in a, c, and d are shown with SWIR, NIR, and red bands
composited. The reference images in b and e are shown with NIR, red, and green bands composited. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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topographic gradients. For this image, Fmask 3.3 showed large false
positive errors in cloud detection in areas covered by mountain snow/
ice, while Fmask 4.0 significantly reduced this kind of commission er-
rors. Fig. 17e is a Landsat 8 image acquired from Los Angeles (a coastal
city) with areas of buildings. Compared to the results generated by
Fmask 3.3, Fmask 4.0 did a good job reducing the false positive errors
from urban/built-up (See the white arrow) and reduced the commission
errors from the coastlines (See the red arrow).
By comparing with our validation samples quantitively, the overall

accuracy of Fmask 4.0 is higher than Fmask 3.3 (92.40% versus 90.73%)
for Landsats 4–7. For cloud detection, the producer's accuracy of Fmask 4.0
is higher than Fmask 3.3 (88.04% versus 84.42%) (Table 3). The user's
accuracy of Fmask 4.0 decreased slightly (0.78% lower than Fmask 3.3)

(Table 3), which suggests Fmask 4.0 may have more commission errors.
For cloud shadow detection, Fmask 4.0 achieved higher producer's and
user's accuracies than Fmask 3.3 (Table 3). Note that the user's accuracies
for cloud shadow are relatively low mainly because of the 3 pixels' dilation.
The improvements in Fmask 4.0 cloud shadow detection is mainly con-
tributed by the enhancements of MFmask (Qiu et al., 2017).
For Landsat 8 images, Fmask 4.0 still shows higher accuracies than

Fmask 3.3, in which overall accuracy is 1.29% higher (Table 4). For
cloud detection, both producer's and user's accuracies of Fmask 4.0
(95.77% and 97.48%) are higher than Fmask 3.3 (95.04% and 96.88%).
On the other hand, Fmask 4.0 achieved higher producer's (69.44%) and
user's accuracies (62.50%) in cloud shadow detection than Fmask 3.3
(55.56% and 53.33%).

Fig. 17. (continued)

Table 3
Confusion matrices for assessing the accuracies of Fmask 4.0 and Fmask 3.3 for
Landsats 4–7 images.

Visual

Cloud Cloud Shadow Clear User (%)

Fmask 4.0 Cloud 633 4 2 99.06
Cloud Shadow 31 45 13 50.56
Clear 55 13 757 91.76
Producer (%) 88.04 72.58 98.06 92.40

Fmask 3.3 Cloud 607 0 1 99.84
Cloud Shadow 37 42 11 46.67
Clear 75 20 760 88.89
Producer (%) 84.42 67.74 98.45 90.73

Table 4
Confusion matrices for assessing the accuracies of Fmask 4.0 and Fmask 3.3 for
Landsats 8 images.

Visual

Cloud Cloud Shadow Clear User (%)

Fmask 4.0 Cloud 657 1 16 97.48
Cloud Shadow 13 50 17 62.50
Clear 16 21 761 95.36
Producer (%) 95.77 69.44 95.84 94.59

Fmask 3.3 Cloud 652 3 18 96.88
Cloud Shadow 15 40 20 53.33
Clear 19 29 756 94.03
Producer (%) 95.04 55.56 95.21 93.30
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4.2. Results for Sentinel-2

We compared the results from Fmask 4.0 with Sen2Cor 2.5.5. The
Sen2Cor is a software for generating Sentinel-2 Level 2A product, which
can provide categorical information of cloud, cloud shadow, water, and

snow at the pixel level (Main-Knorn et al., 2017). For the cloud cate-
gory, Sen2Cor 2.5.5 provides subcategories, including medium prob-
ability cloud, high probability cloud, and thin cirrus cloud (Müller-
Wilm et al., 2018). In this study, we combined them to generate one
cloud mask and compare Sen2Cor 2.5.5 with Fmask 4.0 results. Visual

Fig. 18. Comparisons of Fmask 4.0 and Sen2Cor 2.5.5 for seven Sentinel-2 images. (a) Sentinel-2A image located in Boni Gulf, Indonesia acquired on Mar. 28th, 2017
at Tile 51MUR. (b) Sentinel-2A image located in Sliven, Bulgaria acquired on Sept. 23rd, 2017 at Tile 35TMH. (c) Sentinel-2A image located in Atlas Mountains,
Morocco acquired on Aug. 25th, 2016 at Tile 29RNQ. (d) Sentinel-2B image located in Araouane, Mali acquired on Jan. 3rd, 2018 at Tile 30QUG. (e) Sentinel-2A
image located in Antarctica acquired on Mar. 9th, 2018 at Tile 16CEB. (f) Sentinel-2B image located in Longmen Mountains, China acquired on Apr. 20th, 2018 at
Tile 48RUV. (g) Sentinel-2A image located in New York, U.S. acquired on Aug. 4th, 2017 at Tile 18TWL. The upper images in a, b, c, d, and e are enlargements of the
lower entire images with a size of 40×40 km2. The upper images in f and g are enlargements of the lower entire images with a size of 20×20 km2. The reference
images in a, b, c, d, and g are shown with NIR, red, and green bands composited. The reference images in e and f are shown with SWIR, NIR, and red bands
composited. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. (continued)
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comparisons demonstrate that Fmask 4.0 works better in detecting
clouds and cloud shadows than Sen2Cor 2.5.5 for Sentinel-2 images
(Fig. 18). Fig. 18a is a Sentinel-2A image located in Boni Gulf where
there are well-behaved clouds over a large area of water and highly
vegetated areas. Both Fmask 4.0 and Sen2Cor 2.5.5 worked well in
detecting clouds over highly vegetated surfaces, but Sen2Cor 2.5.5
missed many thin clouds over the water. Fig. 18b is a Sentinel-2A image
located in Sliven where the land surfaces include vegetation and barren.
Fmask 4.0 captured the clouds and cloud shadows missed by Sen2Cor
2.5.5. Fig. 18c is a Sentinel-2A image located in Atlas Mountains, which
is characterized by large elevation differences and topographic reliefs.
Both algorithms detected the clouds over low elevation surfaces, but
Sen2Cor 2.5.5 incorrectly identified high mountains as clouds (See the
red arrow). In contrast, Fmask 4.0 did not show this problem and de-
tected cloud shadows as well. Fig. 18d is a Sentinel-2B image located in
Araouane where lots of thin and thick clouds are over dessert. Sen2Cor
2.5.5 failed to separate clouds from the bright desert, but Fmask 4.0
succeeded. Fig. 18e is a snow-covered Sentinel-2A image acquired from
Antarctica, in which many cloud pixels are missed by Sen2cor 2.5.5 but
identified by Fmask 4.0. Fig. 18f is a Sentinel-2B image located
Longmen Mountains with large coverage of mountain snow/ice. Com-
pared to Sen2Cor 2.5.5, Fmask 4.0 reduced those commission errors
significantly. Fig. 18g is a Sentinel-2A image located in New York.
Fmask 4.0 separated clouds from urban/built-up and identified their
shadows as well, but Sen2Cor 2.5.5 has large commission errors of
clouds and omission errors of cloud shadows.
By comparing with our reference samples, Fmask 4.0 shows higher

accuracies for detecting clouds and cloud shadows than Sen2Cor 2.5.5
(Table 5). The overall accuracy of Fmask 4.0 is 94.30%, which is much
higher than Sen2Cor 2.5.5 (87.10%). For cloud detection, the produ-
cer's and user's accuracies of Fmask 4.0 (93.65% and 97.27%) are
higher than Sen2Cor 2.5.5 (83.43% and 93.35%). For cloud shadow
detection, the producer's accuracy of Fmask 4.0 reached 69.64%, which
is also higher than Sen2Cor 2.5.5 (39.29%). Note that Sen2Cor 2.5.5
has higher user's accuracy (73.33%).

5. Discussions and conclusion

Auxiliary data (e.g., GSWO, DEM, slope, and aspect) are beneficial
for improving cloud and cloud shadow detection. For example, without
the GSWO layer, cloud probability for pixels covered by thick clouds
will be calculated based on approaches designed for cloud detection
over land areas, and this will lead to low cloud probability for clouds
over water areas, especially when there are bright and cold land sur-
faces (e.g., snow/ice) (Fig. 19b). If clouds over water are correctly
classified based on auxiliary data provided by GSWO, their cloud
probabilities will be more reasonable (Fig. 19c). Also, DEM and its
derivatives (slope and aspect) are critical for improving cloud and cloud
shadow detection, especial for places with large topographic gradient
(Qiu et al., 2017). Generally, we recommend using auxiliary data with
the same spatial resolution as the satellite data, but we found DEM with
1-kilometer resolution, and land/water mask with 150-meter resolution
can generate results of similar accuracies (Fig. 7). To make Fmask 4.0
easy to use, we have packaged global GTOPO30 (1 km) and GSWO
(150m) online (https://github.com/gersl/fmask).
Cloud detection in Sentinel-2 data has been quite challenging due to

the lack of a thermal band. Though the use of cirrus band can alleviate
this issue (Zhu et al., 2015), it is still problematic for low altitude
clouds, which are almost invisible in cirrus band (Fig. 20b). With the
inclusion of new HOT-based cloud probability, we can capture these
cloud types again (Fig. 20c). Comparison between results with and
without the new HOT-based cloud probability (Fig. 20c and d) indicates
this new cloud probability is exceptionally effective for sensors without
a thermal band. Note that the current Fmask 4.0 designed for Sentinel-2
images is developed and calibrated based on training images simulated
from Landsat 8 images, and considering the spectral differences be-
tween Landsat 8 and Sentinel-2 (Drusch et al., 2012), training images
from real Sentinel-2 images are needed for better calibrate the algo-
rithm.
Fmask 4.0 defines new default cloud probability thresholds for

Landsats 4–7 (0.1), Landsat 8 (0.175), and Sentinel-2 (0.2) based on the
90 reference images (Fig. 10). Note that Landsat 8 and Sentinel-2 have
similar thresholds, but Landsats 4–7 have a relatively lower threshold.
This is mainly because both Landsat 8 and Sentinel-2 has the cirrus
band to help with detection of thin cirrus clouds, but Landsats 4–7 do
not have this band, and in order to detect those thin cirrus clouds, a
lower threshold is used. Additionally, those thresholds are global op-
tima but not regional optima. Users are welcome to adjust the threshold
to produce the best cloud masks for their study areas. Based on the
preference of commission or omission errors, the user can decrease or
increase the cloud probability threshold as demonstrated in Fig. 21.
Integration of spectral and contextual information is the key ap-

proach for separating clouds from other bright surfaces. By combining
NDSI and the standard deviation of green band, the new SCSI index can
identify 5% snow/ice pixels, which are enough to present the clear-sky
surface and provide more accurate cloud probability estimation

Table 5
Confusion matrices for assessing the accuracies of Fmask 4.0 and Sen2Cor 2.5.5
for Sentinel-2.

Visual

Cloud Cloud Shadow Clear User (%)

Fmask 4.0 Cloud 678 2 17 97.27
Cloud Shadow 16 39 7 62.90
Clear 30 15 723 94.14
Producer (%) 93.65 69.64 96.79 94.30

Sen2Cor 2.5.5 Cloud 604 4 39 93.35
Cloud Shadow 4 22 4 73.33
Clear 116 30 704 82.82
Producer (%) 83.43 39.29 94.24 87.10

Fig. 19. Cloud probability over water
(Same image in Fig. 17a). (a) False
color composite image (SWIR, NIR, and
red bands). (b) Density slice of the
cloud probability over water generated
without GSWO data. (c) Density slice of
the cloud probability over water gen-
erated with GSWO data. Both of the
two density slices were created by the
same color ranges (−∞ < blue<0.5;
0.5 < green<1; 1 < yellow<1.5;
1.5 < red<+∞). (For interpretation
of the references to color in this figure
legend, the reader is referred to the
web version of this article.)
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(Fig. 12). Meanwhile, a line-enhanced NDBI and morphological op-
erators (erosion and dilation) can remove the remaining bright surfaces
from cloud pixels, such as urban/built-up and mountain snow/ice.
Unique for Sentinel-2 data, a 3D spectral-contextual-based index called
CDI can be used to separate clouds from these bright surfaces (Frantz
et al., 2018). This is particularly important, as Sentinel-2 cloud detec-
tion is seriously influenced by the lack of a thermal band. Finally, we
found that the spectral-contextual processes (mainly the erosion op-
erator) may also remove some small clouds and result in some omission
errors. We think this kind of omission errors are less serious than per-
sistent commission errors, which are quite common for these bright
surfaces, especial for time series analyses (Fig. 22). This is because most
of them can tolerate a few noisy pixels, but none of them will be able to
work with persistent missing values (Dong et al., 2015; Huang et al.,
2010a; Veh et al., 2018).
The accurate detection of cloud shadows is challenging because lots

of dark surfaces (e.g., wetland, burned area, and terrain shadow) are
easily confused with cloud shadows. Fmask detects cloud shadows

mainly based on the cloud-shadow projection geometry, which is ben-
eficial to separate clouds from those spectrally dark surfaces. However,
we still found some omission errors in cloud shadow detection (Tables
3-5). The main reason is that cloud shadow shape is calculated based on
cloud object, which is inherently impacted by cloud detection results.
Considering the cloud shadow size is usually a lot smaller than the
cloud size, the omission of cloud shadows is generally less harmful than
omission of clouds.
The accuracies were assessed against random samples from 16 lo-

cations with different land cover types (Fig. 4). To provide a rigorous
global validation of cloud and cloud shadow detection results, more
random samples around the world (random both in the spatial and
temporal domain) should be created in the future. Considering that the
original Fmask algorithm has achieved relatively high accuracy (Foga
et al., 2017), the 1–2% higher overall accuracy of Fmask 4.0 is valuable
for Landsats 4–8 data. Qiu et al. (2019) also applied the Fmask 4.0
algorithm for creating clear-sky Landsat Time Series (LTS) data and
found it can make the LTS more consistent. As for Sentinel-2, we

Fig. 20. Results for a Sentinel-2A image ac-
quired on Oct. 18th, 2016 at Tile 31TCJ. (a)
False color composite image (NIR, red, and
green bands). (b) TOA reflectance at cirrus
band. (c) Results derived from Fmask 4.0 with
HOT-based cloud probability. (d) Results de-
rived from Fmask 4.0 without HOT-based cloud
probability. Note that the red circle indicates
low clouds. (For interpretation of the references
to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 21. The relationship between cloud probability thresholds and accuracies (omission errors and commission errors) for (a) Landsats 4–7, (b) Landsat 8, and (c)
Sentinel-2 images based on 90 reference images.
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observed that Fmask 4.0 achieved 7% higher overall accuracy than
Sen2Cor 2.5.5. Recently, the study comparing cloud detection algo-
rithms demonstrated that this Fmask 4.0 algorithm again achieved 6%
higher accuracy than Sen2Cor 2.5.5 and even comparable to multi-
temporal approach such as MAJA (MACCS-ATCOR Joint Algorithm)
(Baetens et al., 2019). However, Fmask 4.0 still has limitations com-
pared to Sen2Cor 2.5.5. For example, Fmask 4.0 processes the Sentinel-
2 image at 20-meter resolution, and subsequently this would result in
missing very small clouds and their cloud shadows. At the same time,
we also found that Sen2Cor 2.5.5 has fewer commission errors than
Fmask 4.0 in cloud shadow detection (Table 5). In the future, combi-
nation of different cloud and cloud shadow results (e.g., Fmask and
Sen2Cor) may be a better solution.
Although Fmask 4.0 is more complicated than Fmask 3.3, it has the

similar efficiency as Fmask 3.3. Generally, the time required for Fmask
4.0 software to process one Landsat or Sentinel-2 image generally is
between 1.5 and 10min (depend on cloud cover percentage and land
surface characteristics) on a 2.7 GHz computer with an Intel Core i7
processor and 16 GB of RAM. This Fmask package is publically avail-
able at https://github.com/gersl/fmask.
In conclusion, we proposed a new Fmask algorithm (4.0 version)

that substantially improves cloud and cloud shadow detection results
for Landsats 4–8 and Sentinel-2 images by integrating auxiliary data,
new cloud probabilities, and novel spectral-contextual features.
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