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A new algorithm for generating synthetic Landsat images is developed based on all available Landsat data. This
algorithm is capable of predicting Landsat surface reflectance for any desired date. It first excludes cloud, cloud
shadow, and snow observations, and then uses the remaining clear observations to estimate time series models
for each Landsat pixel. Three time series models (a simple model, advanced model, and full model) are used for
estimating surface reflectance for each pixel, and the selection of a time seriesmodel is dependent on the number
of clear observations available: themore clear observations, themore complex themodel will be that is used. For
each time series model there are three components (seasonality, trend, and breaks), that are used for modeling
intra-annual and inter-annual differences and abrupt surface change. Abrupt surface changes are detected by
differencing predicted and observed Landsat observations, and if the difference is larger than twice the Root
Mean Square Error (RMSE) for six consecutive observations, it will be detected as a “break” in the time series
model. The RMSE values are temporally adjusted to provide better threshold range. For each “synthetic”
image, a Quality Assessment (QA) Band is provided that contains information on how the time series model
was estimated and used for generating the synthetic data. We have applied this approach to six Landsat scenes
within the United States. We visually compared the synthetic images with real Landsat images for different
kinds of environments and they are similar for all image pairs. We also quantitatively assessed the accuracy of
the synthetic data by calculating the RMSE value for all clear Landsat observations. The RMSE values for the
three visible bands are the lowest (approximately 0.01), and the Short-wave Infrared (SWIR) bands are slightly
higher in magnitude (between 0.01 and 0.02). The Near Infrared (NIR) band has the highest RMSE values
(between 0.02 and 0.03). The goal of this paper is to provide Landsat images that are free of cloud, cloud shadow,
snow, and Scan Line Corrector (SLC)-off gaps that can be used to derive land cover and bio-physical products.

© 2015 Elsevier Inc. All rights reserved.
Table 1
The six optical Landsat TM/ETM+ spectral bands used for generating
synthetic Landsat images.

TM bands (μm) ETM+ bands (μm)

Band 1 (0.45–0.52) Band 1 (0.45–0.515)
Band 2 (0.52–0.60) Band 2 (0.525–0.605)
Band 3 (0.63–0.69) Band 3 (0.63–0.69)
1. Introduction

The Landsat satellite series provides the longest record of earth ob-
servations (Williams, Goward, & Arvidson, 2006). Due to its relatively
high spatial resolution, accurate radiometric calibration, and high geo-
metric precision, it has been widely used in many aspects of remote
sensing activities. In January 2008, U.S. Geological Survey (USGS) started
to provide Landsat data at no cost via the Internet, whichmakes Landsat
data evenmore popular (Woodcock et al., 2008;Wulder, Masek, Cohen,
Loveland, & Woodcock, 2012). With the freely available Landsat data, it
is now possible to reconstruct the history of the Earth's surface back to
1972 (Pflugmacher, Cohen, & Kennedy, 2012).

Despite all these advantages, Landsat data also have limitations and
issues. The most significant limitation is its relatively low temporal fre-
quency (16 day revisit capability). For each Landsat sensor, if every
overpass is acquired, only 22 or 23 acquisitions per year per Path/Row
are collected (Ju & Roy, 2008). Moreover, due to the limited duty cycles,
the lack of on-board data recording capabilities, and the constraints of
international ground stations, the Landsat project does not acquire
every acquisition globally (Arvidson, Goward, Gasch, & Williams,
2006). Additionally, the presence of cloud, cloud shadow, and snow
further reduce the number of available clear Landsat observations
(hereafter “clear” refers to observations that are free of cloud, cloud
shadow, and snow). For example, the annual mean cloud cover for all
Band 4 (0.76–0.90) Band 4 (0.75–0.90)
Band 5 (1.55–1.75) Band 5 (1.55–1.75)
Band 7 (2.08–2.35) Band 7 (2.09–2.35)
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Fig. 1. Six study sites (red polygons are Landsat scenes by Path/Row), shown in the context of the 2006National Land Cover Database (NLCD) covermap (Fry et al., 2011). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

68 Z. Zhu et al. / Remote Sensing of Environment 162 (2015) 67–83
Landsat Enhanced Thematic Mapper Plus (ETM+) images stored in the
U.S. Landsat archive is approximately 35% (Ju & Roy, 2008). What is
more, the failure of the ETM+ Scan Line Corrector (SLC) that occurred
in May 2003 reduces the total usable data in each Landsat ETM+
image by 22% (Maxwell, Schmidt, & Storey, 2007). Therefore, it is very
difficult to find entire Landsat images that are free of cloud, cloud shad-
ow, snow, and without SLC-off artifacts for a specified time period.

Image compositing has been shown to be a powerful tool for generat-
ing clear satellite images. There aremany compositingmethods available
(Cihlar, Manak, & D'Iorio, 1994; Griffiths, van der Linden, Kuemmerle, &
Hostert, 2013; Hansen et al., 2008; Holben, 1986; Luo, Trishchenko, &
Khlopenkov, 2008; Roy et al., 2010; Stoms, Bueno, & Davis, 1997;
Table 2
The acquisition date for the first and the last Landsat images (month/day/year) and total numb

Path/Row 27/27 12/28 45/30

First image 12/08/1982 05/18/1984 06/26/1
Last image 11/08/2012 09/28/2012 11/22/2
# of images 312 257 486
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Fig. 2. Time series models estimated for Band 4 surface reflectance using all available Landsat o
clear Landsat observations. The green line is the Band4 surface reflectance estimated by the sim
The red line is the Band 4 surface reflectance estimated by the full model. Note that the more c
differences in the time series data. (For interpretation of the references to color in this figure le
White et al., 2014), either based on single criteria (e.g. maximum NDVI,
minimum red Band, or maximum brightness temperature), or multiple
criteria to select the “best” observationwithminimumcloud, cloud shad-
ow, and snow contamination. However, most of the existing image
compositing methodologies are designed for satellite data with high
temporal frequency, such as Moderate Resolution Imaging
Spectroradiometer (MODIS) and Advanced Very High Resolution Radi-
ometer (AVHRR), and only a few studies are applied for satellite data
with relatively low temporal frequency like Landsat data (Griffiths
et al., 2013; Hansen et al., 2008; Hermosilla, Wulder, White, Coops, &
Hobart, 2015; Roy et al., 2010; White et al., in press). Due to the lack of
frequent observations, itmay take a fewmonths or even years to provide
er of Landsat images used to generate synthetic Landsat image for each Path/Row.

35/32 14/32 16/37

984 04/17/1984 11/27/1982 04/12/1984
012 05/27/2013 06/25/2013 07/25/2013

447 482 617

07−02 2005−01−01

Clear Observations
Full Model
Advanced Model
Simple Model

bservations between 2001 and 2004 for a crop pixel. The black points are the all available
plemodel. The blue line is the Band4 surface reflectance estimated by the advancedmodel.
omplex the time series model is, the better the performance in modeling the intra-annual
gend, the reader is referred to the web version of this article.)
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Fig. 3. Time seriesmodel estimated for Band 4 surface reflectance using all available Landsat observations between 2001 and 2004 for a deciduous forest. The black points are the all avail-
able clear Landsat observations. The green line is the Band 4 surface reflectance estimated by the simplemodel based on OLS fit. The blue line is the Band 4 surface reflectance estimated by
the fullmodel based on OLS fit. The red line is the Band 4 surface reflectance estimated by the full model based on LASSO fit. Note that duringwinter time there is no clear observation due
to the presence of snow. As there is no control point during winter time, both the simple and the full models tend to overfit during this time period, especially the full model, while the
LASSO fit does not have this artifact even for the full model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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a composited clear Landsat image. Moreover, the “best” observations
may be selected from images acquired from different times of year and
this can cause problems if there are phenology effects.

To overcome the temporal limitation of Landsat data, one solution is
to “blend” Landsat images with coarse-resolution images that have
much higher temporal frequency. MODIS images are the best option,
as they have much higher temporal frequency (daily observations for
most of the world) and very similar spectral bands (Justice et al.,
2002). With the extra temporal information provided by the MODIS
time series and the finer spatial resolution provided by a few Landsat
Fig. 4. This graph illustrates the temporally-adjusted RMSE used as the threshold for detecting
surface reflectance acquired on different days of the year. The blue circles aremodel predicted B
The red upward-pointing triangles are the upper boundary of the threshold, which is the result
RMSE. The green downward-pointing triangles are the lower boundary of the threshold that is
porally-adjusted RMSE. Note that the variation in the data is significantly larger in growing seas
to color in this figure legend, the reader is referred to the web version of this article.)
images, it is possible to predict clear daily Landsat images (Gao,
Masek, Schwaller, & Hall, 2006; Hilker, Wulder, Coops, Seitz, et al.,
2009; Roy et al., 2008). These “blending” algorithms are capable of pro-
viding exciting results, but also have limitations. The first limitation is
that these algorithms are highly dependent on the MODIS observations
which are not available prior to 2000 (Justice et al., 2002). For Landsat
images acquired before 2000, it is impossible to apply this kind of
method. The second limitation is that they still need a few clear Landsat
images as their input, which for some places with lots of clouds
may take a few years (Zhu, Woodcock, & Olofsson, 2012). The third
abrupt surface change. The black points are the all available clear observations of Band 4
and 4 surface reflectance generated at the same time as the real clear Landsat observations.
of themodel predicted Band 4 surface reflectance plus two times the temporally-adjusted
the result of the model predicted Band 4 surface reflectance minus two times of the tem-
on (middle of the year) than in the other time periods. (For interpretation of the references



Table 3
Explanations for different QA values generated for synthetic data.

QA values Explanations

Tens Unit
0 Number of clear observations ≥ 12
1 6 ≤ number of clear observations b 12
2 Number of clear observations b 6
3 Permanent snow pixel

0 Synthetic data generated within the time range of the time
series model

1 Synthetic data generated by projecting the next time series
model backward in time

2 Synthetic data generated by projecting the previous time
series model forward in time
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limitation is that due to the big differences in spatial resolution between
Landsat and MODIS, the performance of this methodology is highly de-
pending on the patch size of the landscape and degrades when used on
heterogeneous fine-grained landscapes (Gao et al., 2006; Roy et al.,
2008). Finally, this kind of methodology is reported to be less effective
for places where land cover change has occurred (Hilker, Wulder,
Coops, Seitz, et al., 2009). While recent studies report alleviating the
problems of blending Landsat and MODIS for heterogeneous areas
Fig. 5. Four seasonal synthetic Landsat images (Feb. 4th forwinter; May 5th for spring; Aug. 6th
of synthetic Landsat Bands 4, 3, and 2.
(Zhu, Chen, Gao, Chen, & Masek, 2010) or for places of land cover
change (Hilker, Wulder, Coops, Linke, et al., 2009), the other limitations
still exist.

In this paper, we propose a new algorithm that is capable of generat-
ing “synthetic” Landsat images using all available Landsat Thematic
Mapper (TM) and ETM+ images. Based on time series models generat-
ed for each pixel using all available Landsat observations, synthetic
Landsat images that are free of cloud, cloud shadow, and snow (except
for perennial snow) from any given time (within the Landsats 4–7 era)
can be generated. The model-predicted synthetic Landsat images are
produced for the optical bands (Landsat TM and ETM+ Bands 1, 2, 3,
4, 5, and 7) (Table 1) and the last band is a Quality Assessment (QA)
Band. The synthetic images are designed to provide consistent Landsat
data that can be used to derive land cover and bio-physical products.

2. Study area and Landsat data

2.1. Study area

The study area includes six Landsat scenes at different places in the
Conterminous United States (Fig. 1). The selected Landsat scenes
cover a variety of forested ecosystems across axes of spare to dense
tree canopies, broadleaf deciduous to evergreen conifer dominance,
for summer; Nov. 6th for autumn) in 2010 at 12/28 (Path/Row). Each image is a composite
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and disturbance drivers from land use change to forest management to
insect and fire.

2.2. Landsat data

All available Level 1 Terrain (corrected) (L1T) Landsat TM/ETM+
images for Worldwide Reference System (WRS) 27/27, 12/28, 45/30,
35/32, 14/32, and 16/37 (Path/Row) withmore than 20% clear observa-
tions are used (Fig. 1). The percentages of clear observations are esti-
mated based on a newly developed cloud, cloud shadow, and snow
detection algorithm call Fmask (Zhu & Woodcock, 2012; Zhu, Wang, &
Woodcock, 2015). Except for the thermal band, all six optical Landsat
bands (Bands 1, 2, 3, 4, 5, and 7) are used as input to generate synthetic
Landsat images (Table 1). The total number of available Landsat images
is quite variable for different Paths/Rows (Table 2). Generally, the lower
the latitude, the more Landsat images are available. This is mostly be-
cause there is less snow at lower latitudes. The two sites (27/27 and
12/28) with the least available Landsat images are located at high lati-
tudes (Table 2). The time of the first and last images for each site are
also slightly different due to the availability of the data and the time
when all available Landsat data for each Landsat scenewas downloaded.
For all six sites, thefirst Landsat images are acquired betweenNov. 27th,
1982 and June 26th, 1984 and the last Landsat images are acquired be-
tween July 25th, 2013 and Sept. 28th, 2013.
Fig. 6. Four seasonal synthetic Landsat images (Feb. 4th forwinter; May 5th for spring; Aug. 6th
of synthetic Landsat Bands 4, 3, and 2.
3. Methods

3.1. Image preprocessing

All the Landsat images are atmospherically corrected to Surface
Reflectance (SR) using the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) algorithm (Masek et al., 2006; Vermote
et al., 1997). This algorithm uses the Second Simulation of the Satellite
Signal in the Solar Spectrum (6S) radiative transfer model for
atmosphere correction. Next, a two-step cloud, cloud shadow, and
snow screening is applied to all available observations. The first step
is a single-date algorithm called Fmask that detects cloud, cloud shad-
ow, and snow based on the spectral and context information extracted
from a single Landsat image (Zhu & Woodcock, 2012; Zhu, Wang, &
Woodcock, 2015). The second step is based on the results of the first
step and uses the extra temporal information to further screen outliers
that are previously missed in the first step (Zhu & Woodcock, 2014a;
Zhu & Woodcock, 2014b).

3.2. Estimating the time series model

3.2.1. Time series models
For every pixel in the Landsat images, there is at least one time series

model estimated for each spectral band, and the number of estimated
for summer; Nov. 6th for autumn) in 2010 at 45/30 (Path/Row). Each image is a composite
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time series model is dependent on the number of abrupt surface chang-
es that are detected. Three different time series models, consisted of
harmonic (Fourier) models (Davis, 1986; Rayner, 1971) and a long-
term trend component, are used for estimating surface reflectance for
different spectral bands. The first time series model (hereafter will be
called “simple model”) has only four coefficients (Eq. 1) and it has
been successfully applied for Continuous Change Detection and Classifi-
cation (CCDC) of land cover for a Landsat scene located in NewEngland,
USA (Zhu &Woodcock, 2014b). The first coefficient (a0,1) is used for es-
timating the overall value for the ith Landsat Band. The second and third
coefficients (a1,i, b1,i) are used tomodel the intra-annual changes caused
by phenology and sun angle differences for the ith Landsat Band. The
last coefficient (c1,i) is the only term that makes the time series models
different from harmonic (Fourier) models. It is used to estimate the long-
term trend for the ith Landsat Band, and this information would be very
critical for capturing gradual surface changes that are more persistent
over time. This simple model works well for one of the New England
Landsat scenes, however, it may have problem for places where intra-
annual changes do not follow this simple model. Therefore, if more
clear observations are available, a more advanced model (hereafter will
be called “advanced model”) consisting of six coefficients is used
(Eq. 2). Compared to the simple model, the advanced model has two
more coefficients (a2,i, b2,i) that allow for bimodal change. A similar
model has been used in the ContinuousMonitoring of Forest Disturbance
Fig. 7. Four seasonal synthetic Landsat images (Feb. 4th forwinter; May 5th for spring; Aug. 6th
of synthetic Landsat Bands 4, 3, and 2.
Algorithm (CMFDA) for one Landsat scene located between Georgia and
South Carolina, USA (Zhu et al., 2012). When there are more clear obser-
vations available, a model consisting of eight coefficients (hereafter will
be called “full model”) will be applied (Eq. 3). The full model has all the
components of the advanced model and it has two more coefficients
allowing for intra-annual trimodal change (a3,i, b3,i). A similar model
has been used for detecting forest disturbance in near real-time using sat-
ellite image time series (Verbesselt, Zeileis, & Herold, 2012).

ρ̂ i; xð Þsimple ¼ a0;i þ a1;i cos
2π
T

x
� �

þ b1;i sin
2π
T

x
� �

þ c1;i

τ�k−1 b x ≤ τ�k
� � ð1Þ

where,

x Julian date
i the ith Landsat Band (i = 1, 2, 3, 4, 5, and 7)
T number of days per year (T = 365.25)
a0,1 coefficient for overall value for the ith Landsat Band
a1,i, b1,i coefficients for intra-annual change for the ith Landsat Band
c1,i coefficient for inter-annual change (slope) for the ith Landsat

Band
τk⁎ the kth break points
for summer; Nov. 6th for autumn) in 2010 at 14/32 (Path/Row). Each image is a composite

Zhe
铅笔
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ρ̂ i; xð Þsimple surface reflectance for the ith Landsat Band at x Julian date
from the simple model.

ρ̂ i; xð Þadvanced ¼ ρ̂ i; xð Þsimple þ a2;i cos
4π
T

x
� �

þ b2;i sin
4π
T

x
� �

τ�k−1 b x≤τ�k
� � ð2Þ

where,

a2,i, b2,i coefficients for intra-annual bimodal change for the ith
Landsat Band

ρ̂ i; xð Þadvanced surface reflectance for the ith Landsat Band at x Julian date
from the advanced model.

ρ̂ i; xð Þfull ¼ ρ̂ i; xð Þadvanced þ a3;i cos
6π
T

x
� �

þ b3;i sin
6π
T

x
� �

τ�k−1 b x≤τ�k
� � ð3Þ

where,

a3,i, b3,i coefficients for intra-annual trimodal change for the ith
Landsat Band
Fig. 8. Four seasonal synthetic Landsat images (Feb. 4th forwinter; May 5th for spring; Aug. 6th
of synthetic Landsat Bands 4, 3, and 2.
ρ̂ i; xð Þfull surface reflectance for the ith Landsat Band at x Julian date
from the full model.

Fig. 2 illustrates the three different time series models estimated for
Band 4 surface reflectance based on all available Landsat observations
between 2001 and 2004 for a crop pixel. If the simple model (green
line) is used to estimate this time series, it is not able to model the tem-
poral trajectory of this pixel well, due to the simplicity of the model. If
the advanced model (blue line) is used, it will be able to model most
of the temporal variation of the data. The best result is from the full
model (red line) that uses 8 coefficients tomodel the Band 4 surface re-
flectance. It is obvious that themore complex themodel used, the better
the performance in modeling the intra-annual differences in the time
series of Landsat data.

Previous studies suggest that for model estimation to be accurate
and robust, the total number of clear observations should be more
than three times the number of coefficients estimated in the time series
model (Zhu &Woodcock, 2014b). Therefore, if the total number of clear
observations is greater than or equal to 12 but less than 18, the simple
model will be used for estimating surface reflectance. Otherwise, if the
total number of clear reflectance is greater than or equal to 18 but less
than 24, the advanced model will be used. If the total number of clear
observation is greater than or equal to 24, the full model will be applied.
The time span for each time series model can be any time larger than
for summer; Nov. 6th for autumn) in 2010 at 16/37 (Path/Row). Each image is a composite
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1 year. Basically, for each pixel, the more clear observations that are
available, the more complex time series model will be selected.

The additional coefficients will generally provide more accurate
modeling of the temporal trajectory of the Earth's surface, but the addi-
tional coefficients can also cause problems like overfitting because of
the extra freedom in the time series model, which is especially notable
for the advanced and full models. Therefore, instead of using the con-
ventional Ordinary Least Square (OLS) regressionmethod, the Least Ab-
solute Shrinkage and Selection Operator (LASSO) regression approach is
selected for estimating all the time series models (Friedman, Hastie,
Höfling, & Tibshirani, 2007; Friedman, Hastie, & Tibshirani, 2010;
Hastie, Tibshirani, Friedman, & Franklin, 2005; Tibshirani, 1996).
This regression method minimizes the residual sum of squared errors,
with a bound on the sum of the absolute values of the coefficients
(Tibshirani, 1996). In this way, some of the coefficients it produces
will be exactly zero and overfittingwill be greatly constrained. This spe-
cial character of LASSO makes it possible to estimate time series model
with more coefficients without the problem of overfitting.

Fig. 3 illustrates the three different scenarios used for estimating
Band 4 surface reflectance based on all available Landsat observations
between 2001 and 2005 for a deciduous forest pixel. Due to the pres-
ence of snow, there is no clear observations during the winter time,
and this lack of control in this specific time period, causes both the sim-
ple model (green line) and the full model (blue line) estimation to
Fig. 9. Four seasonal synthetic Landsat images (Feb. 4th forwinter; May 5th for spring; Aug. 6th
of synthetic Landsat Bands 4, 3, and 2.
exhibit noticeable overfitting (false peaks or valleys), if the traditional
Ordinary Least Square (OLS) fit is used. The overfitting effect is more
serious for the full model with OLS fit than for the simple model with
OLS fit, due to the extra freedom the full model has. However, if the
LASSO fit is applied for model estimation, overfitting is reduced
significantly even for the full model (red line). Therefore, by using
both LASSO fit and the full model, we are able to better model the
intra-annual difference in the Landsat time series and at the same
time reduce the effect of overfitting.

3.2.2. Detecting abrupt surface change
If there is an abrupt surface change, this algorithm will find a break

for the time series model and fit a new time series model again when
there are enough newly collected clear observations. The method used
for defining an abrupt surface change is similar to the approach de-
scribed in the CCDC algorithm (Zhu & Woodcock, 2014b). The basic
idea is to compare model predictions with real Landsat observations
to find abrupt surface change. If a pixel is observed to change inmultiple
consecutive observations, it is identified as a change pixel.

The algorithm used here makes three major improvements in de-
tecting abrupt surface change, compared to the CCDC algorithm. First,
in the CCDC algorithm (Zhu & Woodcock, 2014b), a threshold of three
times of Root Mean Square Error (RMSE) is used and three consecutive
observations are required to define a change. This criterion are fine for
for summer; Nov. 6th for autumn) in 2010 at 27/27 (Path/Row). Each image is a composite
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detecting land cover change, but often misses more subtle surface
changes such as burnt areas and pest-damaged forests. To capture sur-
face changes that aremore subtle, a lower threshold is used in this algo-
rithm (two times of RMSE). However, this lower thresholdwill also lead
to more commission errors in change detection. Therefore, this algo-
rithm uses six consecutive observations to define an abrupt surface
change, which will remove most of the false positive errors and at the
same time include more subtle changes (Zhu et al., 2012). The second
major improvement is that instead of using all the spectral bands for de-
tecting surface change, this algorithm excludes the blue band and the
thermal band (only using Bands 2, 3, 4, 5, and 7) in change detection.
This is because these two spectral bands are quite sensitive to atmo-
spheric influences and less sensitive to most of the surface changes.
The third major improvement is that the RMSE computed for
thresholding is adjusted through time in this algorithm. This is because
the variation of the time series data will not be the same for different
times of year. For certain times of year, the variance in the data can be
much larger than the other times due to the dynamics of vegetation
phenology or changes of other environment conditions. For example,
there is considerable year-to-year variability in the time of green-up
of forests that is related to interannual climate variability. As a result,
the time seriesmodels do not fit well during the spring green-up period
in some years. For our purposes, we don't want the time series models
Fig. 10. Four seasonal synthetic Landsat images (Feb. 4th forwinter;May 5th for spring; Aug. 6th
of synthetic Landsat Bands 4, 3, and 2.
to find minor variations in the timing of green-up as “change”. The use
of a temporally-adjusted threshold essentially allows us to avoid change
during periods in the year (like green-up) that are themost variable be-
tween years. Therefore, this algorithm uses the nearest (day of year) 24
observations to calculate the RMSE when the total number of clear ob-
servation is more than 24 (after the full model is used for estimating
surface reflectance).

Fig. 4 illustrates how this temporally-adjusted RMSE can be used as
the threshold for a crop pixel using all available Landsat observations. As
the temporally-adjusted RMSE is computed based on day of year, we
use the day of year as the x axis. The black points are the all available
clear Landsat observations of Band 4 surface reflectance. The blue circles
are model predicted Band 4 surface reflectance generated at the same
time as the real clear Landsat observations. The red upward-pointing
triangles are the upper boundary of the threshold, which is the result
of the model predicted Band 4 surface reflectance plus two times of
the temporally-adjusted RMSE. The greendownward-pointing triangles
are the lower boundary of the threshold, which is the result of the
model predicted Band 4 surface reflectance minus two times of
temporally-adjusted RMSE. Note that by using this temporally-
adjusted RMSE, it is possible to generate a predicted range of thresholds
that are spatially and temporally unique. For this crop pixel, it shows
high variance in the summer (especially day of year near 182) and
for summer;Nov. 6th for autumn) in 2010 at 35/32 (Path/Row). Each image is a composite
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less variability in the winter. This temporally-adjusted RMSE makes it
possible to apply a larger threshold in the summer time and a smaller
threshold during the winter time for change detection.

3.2.3. Backup algorithms
For most of the pixels, they will have their time series models esti-

mated, except for pixels with less than 12 clear observations or pixels
that are covered by perennial snow. To provide values for these pixels,
we use backup algorithms to estimate time series model for them. For
pixels with less than 12 clear observations, we treat them differently
based on the total number of clear observations they have. If the total
number of clear observation is more than or equal to 6, the simple
model (Eq. 1) is used to estimate surface reflectance. If the total number
of clear observation is less than 6 (between 1 and 5), wewill use theme-
dian value of all clear observations to represent the overall surface re-
flectance (assumes no seasonality). For pixels that are covered by
perennial snow, it is impossible to estimate time series model for clear
observations, but we can still estimate snow covered surface based on
all available snow observations using the simple model (Eq. 1). As
a) Subset of real Landsat image

c) Band 4 difference between real and synthetic images
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Fig. 11. a) Subset of the false color composite (Bands 4, 3, and 2) real Landsat image acquired on
composite (Bands 4, 3, and 2) synthetic Landsat image generated onAug. 6th, 1995 for the same
4 difference between real and synthetic images. Note that the primary forest and the wetland
references to color in this figure legend, the reader is referred to the web version of this article
snow pixels tend to saturate in Landsat data (Dozier, 1984; Dozier,
1989), we will use all unsaturated snow observations to estimate
snow covered surface reflectance. If the total number of unsaturated
snow observations is less than 12, a value of 1will be used as the surface
reflectance for perennial snow pixels, as there are not enough unsatu-
rated observations for model estimation. Note that the time series
models estimated for pixels with less than 12 clear observations or cov-
ered by perennial snow are only used for generating synthetic Landsat
images and they are not used for detecting surface change due to the
lack of robust model estimation.

3.3. Generating synthetic Landsat images

By generating a time series model for each Landsat pixel, it is possi-
ble to predict “synthetic” Landsat images for any given day. In this
paper, we evaluated this algorithm for six Landsat scenes (Fig. 1). By in-
tegrating the time variable (x: Julian date) into the estimated time series
model, we are able to calculate the model predicted surface reflectance
for each pixel for each spectral band. If we do this for all pixels, we are
b) Subset of synthetic Landsat image

−0.1 −0.05 0 0.05 0.1
0

2000

4000

6000

8000

10000

12000

14000

16000

istogram of Band 4 difference between real and synthetic images

N
um

be
r 

of
 p

ix
el

s

Band 4 difference between real and synthetic images

Aug. 6th, 1995 from Landsat scene located at 35/32 (Path/Row); b) subset of the false color
location; c) Band4difference between real and synthetic images; and d)histogramof Band
are very similar between the real and synthetic Landsat images. (For interpretation of the
.)



77Z. Zhu et al. / Remote Sensing of Environment 162 (2015) 67–83
able to generate synthetic Landsat images for any specified date. This
approach will work for most pixels most of the time, however, between
the time seriesmodels estimated before and after a land surface change,
there is often a time period during which the data fluctuate too much
and it is impossible to initialize a time series model. For example, in
many instances of land use change, there is often a disturbance at one
time and then considerable fluctuation in the reflectance of the site fol-
lowing disturbance. One can imagine a forest area being converted to
residential housing, a process common in New England. In this case,
there is typically an initial disturbance (harvesting of the trees), follow-
ed by a whole series of steps necessary to prepare the site for building.
Then, once home construction begins, surface reflectance will change
as the work proceeds, including the time when the yards are planted
and begin to take form. All these steps lead to changes in reflectance
that do not vary in any organized or seasonal manner. Therefore, some
pixelsmay have a time period when there is no time series model avail-
able. For these pixels we first check if there is a time series model esti-
mated later in time. If there is, we project this time series model
backward in time to estimate surface reflectance for times after the
a) Subset of real Landsat image

c) Band 4 difference between real and synthetic images
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Fig. 12. a) Subset of the false color composite (Bands 4, 3, and 2) real Landsat image acquired on
composite (Bands 4, 3, and 2) synthetic Landsat image generated on Feb. 4th, 2000 for the same
4 difference between real and synthetic images. Note that the cultivated forest and bare soil are
erences to color in this figure legend, the reader is referred to the web version of this article.)
last disturbance. This approach is based on the assumption that when
abrupt surface change occurred, the surface reflectance is best estimat-
ed by the time seriesmodel from after the change. This assumptionmay
ignore some kinds of land cover change that are more ephemeral, but
there is really no better alternative in these cases. On the other hand,
if the desired time of the synthetic images is after the end of the last
time series model, we will project the last time series model forward
in time to predict future surface reflectance. This approach is based on
the assumption that if there is no abrupt surface change, the future sur-
face reflectance will follow the last estimated time series model.

In addition to the model-predicted surface reflectance for the six
Landsat optical bands (Table 1), a Quality Assessment (QA) Band is pro-
duced. The unit digit of the QA Band indicates how the time series
model is estimated and the tens digit of the QA Band indicates how
the time series model is used for generating the synthetic data (Table
3). For the unit digit in the QA Band, it can be any value between 0
and 3, and the smaller the number, the better the quality of the estimat-
ed time seriesmodel. If the unit digit is equal to 0, itmeans that there are
more than 12 clear observations available and this time series model is
b) Subset of synthetic Landsat image
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robust enough for detecting abrupt surface change. If the unit digit is
equal to 1, it means that the total number of clear observations is less
than 12 but more than or equal to 6 and the simple model is used to es-
timate surface reflectance. If the unit digit is equal to 2, it means that the
total number of clear observations is less than 6 and themedian value is
used to represent the overall value of surface reflectance. If the unit digit
is equal to 3, it means that this is a perennial snow pixel and time series
model is estimated based on all available snow observations. For the
tens digit in the QA Band, it can be any value between 0 and 2, and
the smaller the number, the better thequality in generating the synthet-
ic data. If the tens digit is equal to 0, it indicates that this synthetic data is
generated within the time range of the time series model. If the tens
digit is equal to 1, it indicates that this synthetic data is outside the
time range of any time series model and it is generated by projecting
the next time series model backward in time. If the tens digit is equal
to 2, it indicates that this synthetic data is also outside the time range
of any time series model and it is generated by projecting the previous
time series model forward in time. By using the two digits of the QA
Band, it is possible to know the quality of the synthetic data. For
a) Subset of real Landsat image

c) Band 4 difference between real and synthetic images
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Fig. 13. a) Subset of the false color composite (Bands 4, 3, and 2) real Landsat image acquired on
composite (Bands 4, 3, and2) synthetic Landsat image generated onMay 5th, 2000 for the same
4 difference between real and synthetic images. Note that the urban areas and the vegetation
references to color in this figure legend, the reader is referred to the web version of this article
example, if the QA value is 10, it means that this synthetic data is gener-
ated by projecting the time series model backward in time and the time
seriesmodel is estimated based on time seriesmodelwithmore than 12
clear observations. Generally, the smaller the QA value, the better the
quality of the synthetic data.

4. Results

4.1. Results of the synthetic Landsat images

To demonstrate the capability of this algorithm, we generated four
seasonal (Feb. 4th for winter; May 5th for spring; Aug. 6th for summer;
Nov. 6th for autumn) synthetic Landsat images between 1984 and 2012
for all six Landsat scenes. Therefore, for each Path/Row, there are a total
of 116 synthetic Landsat images. In this paper, we will show the four
seasonal synthetic Landsat images in one of these years (2010) for
each Path/Row (Figs. 5–10). Each image is a composite of synthetic
Landsat Bands 4, 3, and 2 surface reflectance. There is no cloud, cloud
shadow, or snow (unless perennial snow) in the synthetic images and
b) Subset of synthetic Landsat image
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we can easily observe the phenology differences for different kinds of
land cover for different Landsat scenes (Figs. 5–10).

4.2. Accuracy assessment

To assess the accuracy of the synthetic Landsat images, we firstly vi-
sually compared several pairs of synthetic Landsat images and real
Landsat images for a variety of land use and land cover types and then
we quantitatively assessed the accuracy of the synthetic data by calcu-
lating the RMSE values for each band for each Path/Row using all avail-
able clear Landsat observations.

4.2.1. Visual comparison
The easiest way to check how accurate the synthetic images are is to

compare them with real Landsat images acquired close in time. In this
study, we have generated four seasonal Landsat synthetic images
(Feb. 4th for winter; May 5th for spring; Aug. 6th for summer;
Nov. 6th for autumn) for each year between 1984 and 2012 for all six
a) Subset of real Landsat image

c) Band 4 difference between real and synthetic images
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Fig. 14. a) Subset of the false color composite (Bands 4, 3, and 2) real Landsat image acquired on
composite (Bands 4, 3, and2) synthetic Landsat image generated onMay 5th, 2002 for the same
4 difference between real and synthetic images. Note that the low residential areas and the agri
of the references to color in this figure legend, the reader is referred to the web version of this
Landsat scenes. Therefore, in this section, wewill compare the synthetic
Landsat images with real Landsat images acquired close to them in time
(±2 days) to see howwell this algorithmworks. Subsets of real Landsat
images and synthetic Landsat images that include primary forests,
wetland, cultivated forests, urban, agriculture, residential, snow,
smoke, topography shadows, clouds, cloud shadows, and lakes are
shown in Figs. 11–16. Visual comparison indicates that the synthetic
Landsat images are very similar to the real Landsat images for different
land use and land cover types. The synthetic Landsat images can even
predict image values for the land use types that change frequently
such as agriculture (Fig. 14). Even illumination condition changes such
as topographic shadows are correctly predicted in the synthetic images
(Fig. 15). For placeswhere the real Landsat images are covered by snow,
smoke, cloud, and cloud shadow, or have SLC-off gaps, the synthetic
images can still provide seamless clear observations (Fig. 15–16).
Based on the spatial pattern of Band 4 difference between real and
synthetic Landsat images and the histogram of Band 4 difference
(Figs. 11–16c & d), most of the differences in Band 4 surface reflectance
b) Subset of synthetic Landsat image
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are less than 0.02. The predictions for agriculture and topography
shadows in Band 4 are less accurate than other land surface types
(Figs. 14–15c). As the synthetic images do not predict cloud, cloud shad-
ow, and snow, these areas have large Band 4 difference (Figs. 15–16c),
and this also leads to longer tails in the histogram of Band 4 difference
(Figs. 15–16d).

4.2.2. Quantitative assessment
To quantitatively assess the synthetic Landsat data, we predicted the

synthetic Landsat images for all available Landsat images for each site
and compared themwith the real Landsat images. Cloud, cloud shadow,
and snow were masked out in this quantitative assessment. The RMSE
between the real and synthetic images is computed for each spectral
band for each site using all available clear Landsat observations
(Fig. 17). The RMSE values for the visible bands (Bands 1, 2, and 3) are
relatively small (approximately 0.01 in the units of surface reflectance)
compare to the RMSE values for the Short-wave Infrared (SWIR) bands
(between 0.01 and 0.02), and the Near Infrared (NIR) band (between
0.02 and 0.03). Due to large phenology differences, the RMSE values
a) Subset of real Landsat image

c) Band 4 difference between real and synthetic images
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Fig. 15. a) Subset of the false color composite (Bands 4, 3, and 2) real Landsat image acquired on
composite (Bands 4, 3, and2) synthetic Landsat image generated onNov. 6th, 2004 for the same
4 difference between real and synthetic images. Note that most of the topographic shadows are
in the real Landsat image do not exist in the synthetic image. (For interpretation of the referen
for the NIR band are significantly larger than the other spectral bands.
For the two Landsat scenes with less vegetation (35/32 and 45/30),
the magnitude of RMSE values for the NIR bands is much smaller
(~0.02). To help put these values in perspective, a change of 0.01 in sur-
face reflectance corresponds to an approximately 2 DN change in the
original 8-bit Landsat images. Since the RMSE values for most of the
bands are around 0.01, if we convert the surface reflectance image
back to DNs, the difference for most of the predicted values will be
around 2 DNs, which is similar in magnitude (1–2 DNs) to the noise
levels in Landsat images (Masek, Honzak, Goward, Liu, & Pak, 2001).

5. Discussion and conclusions

The approach presented here has many advantages. First, by using
all the available Landsat observations and time series analysis, the pre-
dicted synthetic images do not have clouds, cloud shadows, snow, or
Landsat 7 SLC-off gaps. Second, as the time series models are capable
of modeling the seasonality of the data, the synthetic images will not
be influenced by vegetation phenology and sun angle differences.
b) Subset of synthetic Landsat image
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Third, unlike other approaches that use MODIS time series to help gen-
erating synthetic Landsat images (Gao et al., 2006; Hilker, Wulder,
Coops, Linke, et al., 2009; Hilker, Wulder, Coops, Seitz, et al., 2009; Roy
et al., 2008; Zhu et al., 2010), this approach only uses Landsat data as
its input. Therefore, it has the potential of generating synthetic Landsat
images beginning from the first available Landsat image (as early as
1972). In this study, as we only use TM and ETM+ images, we are
able to provide synthetic Landsat images as early as 1982 (when
Landsat 4 is launched). Fourth, only Landsat pixels are used for generat-
ing synthetic data (without using MODIS), this algorithm can still
achieve high accuracies in heterogeneous areas. Finally, as land surface
changes are also taken into account in generating time series models,
thismethod should not have problems in places of frequent land surface
change.

The major issue with this approach is that it requires many clear
Landsat observations for accurate time series model estimation. For
places where clouds and snow are persistent, there may not have
a) Subset of real Landsat image
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Fig. 16. a) Subset of the false color composite (Bands 4, 3, and 2) real Landsat image acquired on
composite (Bands 4, 3, and 2) synthetic Landsat image generated onAug. 6th, 2006 for the same
4differencebetween real and synthetic images (excluding pixels located at SLC-off gaps). Note t
shadows that appeared in the real Landsat image do not exist in the synthetic image. The SLC-
color in this figure legend, the reader is referred to the web version of this article.)
been enough clear observations to estimate time series model for each
pixel. This issue will be more serious for places outside of the United
States, where observations are often less frequent. The launchof Landsat
8will helpwith the problembecause it is collectingdatamuchmore fre-
quently than any of the previous Landsat satellites (Roy et al., 2014). In
the near future, the two Sentinel 2A/2B satellites will further increase
the temporal frequency of Landsat-like observations (Drusch et al.,
2012). Though there are differences in the spectral bands and spatial
resolutions between Landsat and Sentinel, with some simple resam-
pling methods, it will be possible to combine Sentinel 2 observations
with Landsat observations to generate synthetic data. If combining
Landsat 7 and 8, and the two Sentinel 2 sensors, there will be around
10 observations per month, which will greatly improve the quality of
model estimation and provide much better synthetic Landsat-like im-
ages. For places located at high latitude, persistent snow cover during
winter time would also cause problems if we want to generate snow-
free synthetic images. Though we used the LASSO regression to reduce
b) Subset of synthetic Landsat image
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Fig. 17.Magnitude of RMSE values computed for each band and for each Path/Row. The RMSE values are calculated based on all available clear Landsat observations and the corresponding
model predicted synthetic data.
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overfitting during this time period, these predicted values are not al-
ways physically meaningful, as for some locations, there may not have
any clear observation during the winter time.

Further work is ongoing to assess the suitability of this approach for
quantitative remote sensing applications, such as deriving land cover
and bio-physical products. If the synthetic Landsat data are capable of
achieving good accuracies in quantitative remote sensing applications,
they may be used as an alternative to real Landsat images that are usu-
ally full of gaps caused by cloud, cloud shadow, snow, and SLC-off
artifacts.
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