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Identification of clouds, cloud shadows and snow in optical images is often a necessary step toward their use.
Recently a new program (named Fmask) designed to accomplish these taskswas introduced for usewith images
from Landsats 4–7 (Zhu & Woodcock, 2012). In this paper, there are the following: (1) improvements in the
Fmask algorithm for Landsats 4–7; (2) a new version for use with Landsat 8 that takes advantage of the new cir-
rus band; and (3) a prototype algorithm for Sentinel 2 images. Though Sentinel 2 images do not have a thermal
band to help with cloud detection, the new cirrus band is found to be useful for detecting clouds, especially for
thin cirrus clouds. By adding a new cirrus cloud probability and removing the steps that use the thermal band,
the Sentinel 2 scenario achieves significantly better results than the Landsats 4–7 scenario for all 7 images tested.
For Landsat 8, almost all the Fmask algorithm components are the same as for Landsats 4–7, except a new cirrus
cloud probability is calculated using the new cirrus band, which improves detection of thin cirrus clouds. Landsat
8 results are better than the Sentinel 2 scenario, with 6 out of 7 test images showing higher accuracies.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Clouds, cloud shadows, and snow significantly influence the spectral
bands of optical sensors (Dozier, 1989; Irish, Barker, Goward, &
Arvidson, 2006; Zhu &Woodcock, 2012). Their presence can cause seri-
ous problems for a variety of remote sensing activities, including: image
compositing (Roy et al., 2010); correction for atmosphere effects
(Vermote, El Saleous, & Justice, 2002); calculation of vegetation indices
(Huete et al., 2002); classification of land cover (Zhang, Guindon, &
Cihlar, 2002); and most importantly in change detection (Zhu &
Woodcock, 2014a). Therefore, it is important to detect clouds, cloud
shadows, and snow in satellite images, and screen them accurately
before any kind of remote sensing activity is performed.

However, accurate cloud, cloud shadow, and snow detection for
satellite images is quite challenging. It is difficult to separate clouds
from other clear-sky observations based on the reflectance of spectral
bands, as there aremany kinds of clouds and each kindmay have differ-
ent spectral characteristics (Platnick et al., 2003). In particular, optically
thin clouds are difficult to detect as they may have spectral signatures
similar to the Earth surface underneath (Zhang et al., 2002; Zhu &
Woodcock, 2012). Cloud shadow detection is also difficult, as there are
many kinds of dark surfaces that have spectral signatures similar to
cloud shadows, such as topographic shadows, wetlands, and water.
Snow detection is somewhat easier due to its distinctive spectral
signature. The widely used Normalized Difference Snow Index (NDSI)
is helpful in snow detection, as snow pixels are usually high in NDSI
values, while pixels without snow tend to have much lower values
(Dozier, 1989).

The 40+ years of Landsat data provide one of the most valuable
datasets available for mapping and monitoring the Earth surface
(Coppin & Bauer, 1994; Kennedy et al., 2014). The availability of user
ready image products has proven to be critical for applications uptake
of Landsat images. Opening of the archive (Woodcock et al., 2008) com-
bined with analysis ready products has led to a massive increase in
usage. Automated cloud screening has made it possible for user to
spend less time on data preparation and more time on value-added
analyses, especially with regards to image compositing (Griffiths, van
der Linden, Kuemmerle, & Hostert, 2013; Roy et al., 2010; White et al.,
2014) and time series application (Huang, Goward, et al., 2010;
Kennedy, Yang, & Cohen, 2010; Zhu & Woodcock, 2014b). Lots of
cloud detection algorithms have been developed for the Thematic
Mapper (TM) carried by Landsat 4 and Landsat 5, and the Enhanced
Thematic Mapper Plus (ETM+) carried by Landsat 7 (Huang, Thomas,
et al., 2010; Irish et al., 2006; Roy et al., 2010; Zhu & Woodcock,
2012). As Landsat TM and ETM+ have very similar spectral bands
(Table 1), most cloud detection algorithms tend to treat them as the
same sensor (hereafter Landsat TM and ETM+will be called “Landsats
4–7” in this paper for simplicity). Besides cloud detection, some of these
algorithms can also detect cloud shadow and snow in Landsats 4–7 im-
ages. For example, Huang, Thomas, et al., 2010 can also provide cloud
shadow mask and Oreopoulos et al. (2011) can identify snow. The
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Table 1
Landsat TM, ETM+, OLI/TIRS, and Sentinel 2 spectral bands. The spectral bands used in the new Fmask algorithm are highlighted in bold letters.

TM bands (μm) ETM+ bands (μm) OLI/TIRS bands (μm) Sentinel 2 bands (μm)

Band 1 (0.45–0.52) Band 1 (0.45–0.515) Band 1 (0.43–0.45) Band 1 (0.433–0.453)
Band 2 (0.52–0.60) Band 2 (0.525–0.605) Band 2 (0.45–0.51) Band 2 (0.458–0.523)
Band 3 (0.63–0.69) Band 3 (0.63–0.69) Band 3 (0.53–0.59) Band 3 (0.543–0.578)
Band 4 (0.76–0.90) Band 4 (0.75–0.90) Band 4 (0.64–0.67) Band 4 (0.650–0.680)
Band 5 (1.55–1.75) Band 5 (1.55–1.75) Band 5 (0.85–0.88) Band 5 (0.698–0.713)
Band 6 (10.40–12.50) Band 6 (10.40–12.50) Band 6 (1.57–1.65) Band 6 (0.733–0.748)
Band 7 (2.08–2.35) Band 7 (2.09–2.35) Band 7 (2.11–2.29) Band 7 (0.765–0.785)

Band 8 (0.52–0.90) Band 8 (0.50–0.68) Band 8 (0.785–0.900)
Band 9 (1.36–1.38) Band 8a (0.855–0.875)

Band 10 (10.60–11.19) Band 9 (0.930–0.950)
Band 11 (11.50–12.51) Band 10 (1.365–1.385)

Band 11 (1.565–1.655)
Band 12 (2.100–2.280)
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newly developed Fmask algorithm is capable of detecting cloud, cloud
shadow, and snow at the same time (Zhu & Woodcock, 2012).

Recently, Landsat 8 has been launchedwith two sensors: the Opera-
tional Landsat Imager (OLI) and the Thermal Infrared Sensor (TIRS)
(Irons, Dwyer, & Barsi, 2012; Roy et al., 2014). This new satellite has
all the spectral bands of Landsat TM and ETM+ and it also has some
new bands (Table 1). The new Short Wave Infrared (SWIR) band
(Band 9) (1.36–1.38 μm) is especially helpful for detecting high altitude
clouds, such as cirrus clouds (hereafter this new SWIR band will be
called “cirrus band” in this paper for simplicity). Because of the strong
water absorption at this specific band, clouds at high altitudes will
have small above-cloud two-way water vapor path lengths, and this
will make the cirrus band relatively bright (Gao, Goetz, & Wiscombe,
1993). On the other hand, for low altitude clouds and Earth surfaces in
most environments, the two-way water vapor path length is usually
quite large, and this will make the cirrus band generally dark. However,
bright surfaces in dry environments or at high altitudes (e.g., polar
regions or high mountains) can also have relatively high reflectance in
the cirrus band and can be misidentified as clouds (Wilson &
Oreopoulos, 2013). To reduce this kind of commission error, a relatively
large threshold of the cirrus band is required, but this will also exclude
some of the thin cirrus clouds.Wilson and Oreopoulos (2013) proposed
a new cloud detection algorithm for Landsat 8 images. This algorithm is
Fig. 1. To represent the wide variety of environments and different cloud types, 7 Land
able to provide reasonably good cloud and snow detection for Landsat 8
data based onmany spectral tests that are originally developed for cloud
detection in Moderate Resolution Imaging Spectroradiometer (MODIS)
images by Luo, Trishchenko, & Khlopenkov, 2008. In this study, a thresh-
old of 0.0113 in Top Of Atmosphere (TOA) reflectance of the cirrus band
is suggested for detecting cirrus clouds. This threshold is able to find
most of the cirrus clouds, but will also persistently misclassify bright
surfaces in dry environments or at high altitudes with cirrus band TOA
reflectances higher than this threshold. In addition, the current Level 1
Landsat 8 images include a Quality Assessment (QA) band that also
provides cirrus confidence information. Due to the time constraints for
releasing the Landsat 8 products, the current cirrus detection in the
QA band is based on a simple assumption that if cirrus band reflectance
is larger than 0.02, this pixel is labeled as cirrus cloud. This threshold
may miss many cirrus clouds that have TOA reflectance less than 0.02
and also may suffer from false detection for bright surfaces in dry envi-
ronments or at high elevations with TOA reflectance higher than 0.02.
Moreover, both of the two algorithms do not have the ability to provide
cloud shadow masks for Landsat 8 images.

In the near future, two Sentinel 2 satellites will be launched, with
Sentinel 2A planned in 2014 and Sentinel 2B to be launched 18 months
later (Berger, Moreno, Johannessen, Levelt, & Hanssen, 2012). The sen-
sors on Sentinel 2 have 13 spectral bands from the visible to the SWIR,
sat images are selected. The red color shows the coverage of each Landsat scene.
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Fig. 3. Fmask results for the Landsats 4–7 (Fig. 3A) and the Sentinel 2 (Fig. 3B) scenarios at Path 233/Row 61 (clouds in yellow, cloud shadows in green, and clear-sky in black).
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Fig. 2. Landsat 8 image located at Path 233/Row61. Fig. 2A shows the false color composite image (NIR, red, and green bands). Fig. 2B shows the thermal band (Band 10) and Fig. 2C shows
the cirrus band (Band 9). Fig. 2D shows a density slice of the cirrus band TOA reflectance (0 b green b 0.01; 0.01 b blue b 0.03; 0.03 b yellow b 0.04; 0.04 b red b 1). Note that for the thin
cirrus clouds with TOA reflectance between 0.01 and 0.03 (blue color in Fig. 2D) are almost invisible in the false color composite image (Fig. 2A).
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Table 3
Confusionmatrix for assessing Fmask accuracies for the Landsats 4–7 scenario at Path 223/
Row 61.

Landsats 4–7 scenario

Ground truth (pixels)

Class Clear land Clear water Cloud shadow Cloud User

Clear land 6 4 4 176 3.16%
Clear water 0 0 0 0 N/A
Cloud shadow 0 0 0 10 0.00%
Cloud 0 0 0 0 N/A
Producer 100.00% 0.00% 0.00% 0.00% Overall = 3.00%
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including 6 that are similar to the Landsat TM and ETM+ bands
(Table 1) (Drusch et al., 2012). It is important to design an automated
cloud, cloud shadow, and snow detection algorithm for Sentinel 2 be-
fore it is launched. Compared to Landsat TM and ETM+, Sentinel 2
has the advantage of a cirrus band, but does not have a thermal band,
which is also an important band for cloud detection. Most of the cloud
detection algorithms are heavily dependent on the thermal band, as
cloud pixels are much colder than clear-sky pixels (Huang, Thomas,
et al., 2010; Irish et al., 2006; Zhu & Woodcock, 2012). Moreover, most
of the cloud shadow detection algorithms also need the thermal band
to estimate cloud height (Huang, Thomas, et al., 2010; Khlopenkov &
Trishchenko, 2007; Masek et al., 2006; Zhu & Woodcock, 2012).
Therefore, it would be quite challenge to design a good cloud and
cloud shadow detection algorithm for Sentinel 2 images.

The Fmask algorithm was originally developed for masking cloud,
cloud shadow, and snow for Landsats 4–7. By using an object-based
cloud and cloud shadow matching algorithm, it is capable of providing
cloud, cloud shadow, and snow masks for each individual image. This
algorithm has been widely used and has been integrated into the
Landsat surface reflectance Climate Data Record (CDR) provided by
U.S. Geological Survey (USGS) Earth Resources Observation and Science
(EROS) Center (Maiersperger et al., 2013; Masek et al., 2006). As Fmask
is a relatively new algorithm, we are constantly improving it based on
the large amount of feedback from users. This paper first introduces
the major improvements made to the Fmask algorithm. Then, the
Fmask algorithm is expanded to the Landsat 8 scenario by taking advan-
tage of the cirrus band. Last, a version of Fmask is developed that could
be used with Sentinel 2 images based on the bands available on Landsat
8. So for the Sentinel 2 scenario, optical bands and the cirrus band are
used. Most of the Fmask algorithm designed for Sentinel 2 and Landsat
8 remains the same as the original Landsats 4–7 version. Changes occur
only where the spectral bands of the two new sensors differ from the
Landsats 4–7 scenario. There are three major questions considered in
this paper: 1) How to better use the new cirrus band on Landsat 8 and
Sentinel 2 for better cloud detection?; 2) Can we still detect clouds
and their shadows accurately when there is no thermal band available
(the Sentinel 2 scenario)?; and 3) Which scenario (Landsats 4–7,
Sentinel 2, or Landsat 8) has the best results in cloud detection?

2. Algorithm improvements and expansions

2.1. Algorithm improvements

There are many improvements made for this version of the Fmask
algorithm (3.2. version) compared to the original Fmask algorithm
(1.6. version) published in 2012. This new version is able to achieve
better results and at the same time maintaining similar computation
efficiency as the previous version. The improvements are briefly intro-
duced in the following six aspects.

Cloud Detection. This improvement reduces commission error for
clear-sky pixels that have a high cloud probability (calculated by
Fmask). In the original Fmask algorithm, a pixel is labeled cloudy direct-
ly if its cloud probability is higher than 99%, without taking any spectral
tests (Zhu & Woodcock, 2012). However, this criterion tends to
Table 2
The percent disagreement for Fmask results between the Landsats 4–7 and the Sentinel
2 scenarios at Path 223/Row 61.

Sentinel 2 Clear land Clear water Cloud shadow Snow/ice Cloud

Landsats 4–7

Clear land 45.13% 0.00% 2.48% 0.00% 28.35%
Clear water 0.00% 0.84% 0.04% 0.00% 0.11%
Cloud shadow 0.14% 0.01% 1.17% 0.00% 1.88%
Snow/ice 0.00% 0.00% 0.00% 0.00% 0.00%
Cloud 0.00% 0.00% 0.01% 0.00% 19.84%
overestimate clouds, as there are clear-sky pixels that are bright,
white, and cold and as a result have high cloud probability values
(e.g., high altitude snow). In order to prevent this kind of commission
error, this criterion is removed from the new Fmask algorithm.

Cloud Detection over Water. The original Fmask algorithm uses a
fixed threshold (cloud probability of 50%) for cloud detection over
water (Zhu & Woodcock, 2012). This threshold works well for most
water bodies but may not work well for places where the water pixels
are both cold (compared to the land pixels) and bright (e.g., turbid
water or water containing high concentration of sediments). In the
new Fmask algorithm, the threshold used for cloud detection in water
areas is a dynamic threshold derived by adding the upper level (82.5
percentile) of cloud probability of all clear water pixels with a constant
of 0.2 (this approach mirrors the dynamic threshold used for detecting
clouds in land areas). This statistically derived threshold is able to
provide better cloud detection over water areas.

Potential Shadow Detection. Based on the assumption that cloud
shadows are usually dark in the Near Infrared (NIR) band, the original
Fmask algorithm uses the difference between the NIR band and the
flood-fill transformation (Soille, 1999; Soille, Vogt, & Colombo, 2003)
of the same NIR band to extract potential cloud shadows (Zhu &
Woodcock, 2012). This method works well for most places, but when
there aremanydark objects in theNIR band, it will label toomany pixels
as potential cloud shadow, which may cause problems for the step that
matches clouds and cloud shadows. As cloud shadows are also dark in
the SWIR band, in the new Fmask algorithm we use both the NIR band
and one of the SWIR bands (centered at 1.65 μm) to extract potential
cloud shadows. Therefore, in this new Fmask algorithm, the flood-fill
transformation is used for both theNIR and a SWIR band. The pixel is la-
beled as “potential cloud shadow” if the flood-fill transformed image
minus the original image is larger than 0.02 in both NIR and SWIR
bands. This improvement reduces the number of pixels identified as
“potential cloud shadow” and produces better cloud shadow detection
results.

Cloud Shadow Detection. The Fmask algorithm matches clouds with
their shadows based on similarity measurements (Zhu & Woodcock,
2012). This algorithm iterates cloud height from a minimum possible
height to a maximum possible height and computes the similarity be-
tween cloud and cloud shadow for different cloud heights. In the
Table 4
Confusion matrix for assessing Fmask accuracies for the Sentinel 2 scenario at Path 233/
Row 61.

Sentinel 2 scenario

Ground truth (pixels)

Class Clear
land

Clear
water

Cloud
shadow

Cloud User

Clear land 0 0 0 0 N/A
Clear water 0 0 0 0 N/A
Cloud shadow 2 0 4 8 28.57%
Cloud 4 4 0 178 95.70%
Producer 0.00% 0.00% 100.00% 95.70% Overall = 91.00%
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original Fmask algorithm, the testing of cloud heights continues if the
similarity is increasing or does not decrease to 98% of the maximum
measured similarity; otherwise, the search for a cloud height stops
and the cloud shadow is matched at themaximum similarity. However,
sometimes the iteration may stop earlier than it should, as before the
similarity gets to the maximum similarity; there may be local maxima
that are 2% larger than the similarity measured for neighboring cloud
heights. In the improved Fmask algorithm, the cloud and cloud shadow
match will not stop unless the similarity value decreases to 95% of the
maximum similarity value. This simple change improves matching of
clouds and cloud shadows by preventing errors caused by premature
stops in the search for an optimum cloud height.

Snow Detection I. The original Fmask algorithm uses a temperature
threshold to minimize false detection of snow on warm and bright
nonsnow surfaces, in which a threshold of 277 K was chosen (Zhu &
Woodcock, 2012). This threshold has been previously applied to the
MODIS snow cover algorithm (Hall et al., 2001). Recent results show
that some warm snow pixels can also have brightness temperatures
higher than 277 K, and in Collection 5 of MODIS snow cover algorithm,
a higher temperature threshold of 283 K is used (Hall, 2012). Therefore,
in the new Fmask algorithm, if there is thermal band available, the
higher temperature threshold of 283 K is chosen for snow detection
A

Fig. 5. Fmask results for the Sentinel 2 (Fig. 5A) and the Landsat 8 (Fig. 5B) scenarios at P
Snow Detection II. The pixels surrounding clouds and cloud shadows
are masked out in the Fmask algorithm because many of these pixels
may still be influenced by the thin edges of clouds and their shadows
(Zhu & Woodcock, 2012). Based on many users’ feedback of the Fmask
algorithm, the pixels surrounding snow can also be partially influenced
by snow and they may cause problems for remote sensing activities.
Therefore, in the newFmask algorithm,wedilate thepixels surrounding
snow in 8-connected directions for a user-specified distance (can be any
positive integer based on the user’s preference). The pixels removed
from this dilation are included in the snow mask in Fmask results.

2.2. Algorithm expansions

The original Fmask algorithm can only provide cloud, cloud shadow,
and snow masks for images from Landsats 4–7. The new Fmask
algorithm is also capable of providing cloud, cloud shadow, and snow
mask for Landsat 8 and Sentinel 2 images. The cirrus band included on
the OLI sensor and in Sentinel 2 provides an opportunity for better de-
tecting thin cirrus clouds. As Sentinel 2 images do not have a thermal
band, the new Fmask algorithm designed for Sentinel 2 images is differ-
ent from the algorithm designed for Landsat 8 images. As Landsat 8 has
two thermal bands, we will use the onewith shorter wavelength (Band
B

ath 233/Row 61 (clouds in yellow, cloud shadows in green, and clear-sky in black).



Table 6
Confusion matrix for assessing Fmask accuracies for the Sentinel 2 scenario at Path 233/
Row 61.

Sentinel 2 scenario

Ground truth (pixels)

Class Clear land Clear water Cloud shadow Cloud User

Clear land 3 0 1 169 1.73%
Clear water 0 0 0 0 N/A
Cloud shadow 0 0 1 22 4.35%
Cloud 0 1 1 2 50.00%
Producer 100.00% 0.00% 33.33% 1.04% Overall = 3.00%

Table 5
The percent disagreement for Fmask results between the Sentinel 2 and the Landsat 8 sce-
narios at Path 233/Row 61.

Landsat 8 Clear land Clear water Cloud shadow Snow/ice Cloud

Sentinel 2

Clear land 39.15% 0.00% 0.59% 0.00% 5.54%
Clear water 0.00% 0.83% 0.00% 0.00% 0.01%
Cloud shadow 0.77% 0.03% 1.80% 0.00% 1.10%
Snow/ice 0.00% 0.00% 0.00% 0.00% 0.00%
Cloud 1.11% 0.08% 0.20% 0.00% 48.79%
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10) due to less atmosphere influences and the recent report of “ghost-
ing” issues found in the other thermal band (Schott et al., 2014).

2.2.1. Algorithm for Landsat 8
For Landsat 8 images, most of the Fmask algorithm is exactly the

same as it is for Landsats 4–7 images, except for places where the cirrus
band is applied. The cirrus band is used in the first pass of generating the
potential cloud layer, in which a cirrus cloud test is applied for better
identification of Potential Cloud Pixels (PCP). This cirrus cloud test is
quite simple: if the TOA reflectance of the cirrus band is larger than
0.01, this pixel is labeled as a PCP. Note that the threshold used here is
much lower than the threshold used by theMODIS cloud detection algo-
rithm (Ackerman et al., 2010). In theMODIS cloud products, land pixels
with cirrus band TOA reflectance less than 0.03 are considered clear.
However, there are many cirrus clouds with TOA reflectance in the
cirrus band less than 0.03. One reason for the MODIS cloud algorithm
to use this high threshold is the cross-talking problem observed in the
cirrus band, which is caused by energy leakage from another SWIR
band centered 11 μm (Guenther, Xiong, Salomonson, Barnes, & Young,
2002). This cross-talk forces the MODIS cloud detection algorithm to
use a higher threshold to reduce false positive errors in detecting cirrus
clouds. For Landsat 8 images, there is no cross-talk problem observed
and a smaller threshold is possible for improved detection of thin cirrus
clouds with TOA reflectance less than 0.03. The threshold of 0.01 is de-
rived by a recent study that finds this threshold corresponds to the low-
est 1% of simulated cloudy-sky reflectance (Wilson & Oreopoulos,
2013).

The cirrus band is also applied to calculate the cloud probability. As
the cirrus bandwill only have high TOA reflectance for clouds at high al-
titudes (mostly cirrus clouds), the new Fmask algorithm uses the value
of the TOA reflectance of the cirrus band to calculate a cirrus cloud prob-
ability and adds this new probability to the original cloud probability
calculated by the original Fmask algorithm. By combining the old
cloud probability that identifies both thin and thick clouds and the
new cirrus band probability that identifies mostly cirrus clouds, this
new cloud probability is capable of providing better cloud probabilities,
especially for places with lots of thin cirrus clouds (see Section 3 for
details).

The cirrus cloud probability is calculated based on the magnitude of
cirrus band TOA reflectance. The cirrus cloud probability increases line-
arly with the TOA reflectance of the cirrus band and gets to 1 when the
TOA reflectance equals to 0.04 (Ackerman et al., 2010). If the cirrus band
TOA reflectance is larger than 0.04, the cirrus cloud probability will con-
tinue to increase linearly with the cirrus band TOA reflectance (Eq. 1).

Cirrus cloud probability ¼ cirrus band=0:04 ð1Þ

With the help of the cirrus band, this new version of the Fmask
algorithm is able to detect both thick and thin clouds; including some
extremely thin cirrus clouds in Landsat 8 images (see Section 3 for de-
tails). Based on the cloud and cloud shadow approach, this new Fmask
algorithm is also capable of detecting cloud shadows casted by some
extremely thin cirrus clouds.

2.2.2. Algorithm for Sentinel 2 images
Except for the thermal band, Sentinel 2 images have all the spectral

bands of Landsats 4–8. The lack of a thermal band precludes the use of
several of the tests that are part of Fmask for the Landsat satellites. How-
ever, with the extra cirrus band, the same cirrus test used for Landsat 8
can be employed for Sentinel 2 data for the first pass in generating
the potential cloud layer. Therefore, the new cloud probability for the
Sentinel 2 scenario is calculated as in Eq. (2) or Eq. (3). The brightness
probability and the variability probability are calculated the same as
the original Fmask algorithm and the cirrus cloud probability is calculat-
ed the same as the new Fmask algorithm designed for Landsat 8 images
(Eq. 1). If it is a water pixel, the new cloud probability is a combination
of brightness probability and cirrus cloud probability (Eq. 2). If it is a
land pixel, the new cloud probability is a combination of whiteness
probability and cirrus cloud probability (Eq. 3).

New cloud probability waterð Þ ¼ brightness probability
þ cirrus cloud probability ð2Þ

New cloud probability landð Þ ¼ variability probability
þ cirrus cloud probability ð3Þ

For cloud shadow detection, the thermal band is used in two places
in the original Fmask algorithm: to predict cloud height range and to
build a three-dimensional cloud object. In the new Fmask algorithmde-
signed for Sentinel 2, the predicted cloud height range is fixed between
200 m and 1,200 m and each cloud object is treated as a flat plate
instead of three-dimensional cloud object for predicting cloud shadow
locations. For snow detection, the thermal band originally used for a
temperature screen to reduce false positive errors is no longer applied
to Sentinel 2 images.

Though there is no thermal band available in Sentinel 2 images, with
the extra cirrus band, this new version of the Fmask algorithm can still
capture many kinds of clouds, including clouds that are extremely thin
and match shadows for them (see Section 3 for details). For cloud
shadow detection, if a cloud is thick, the matched shadows may have
a different shape than the actual cloud shadow. For snow detection,
the lack of temperature screen may lead to more commission errors,
but will also reduce omission errors for some warm snow pixels.

3. Fmask results and accuracy assessment

As the cloud and cloud shadowdetection accuracies for Landsats 4–7
images have already been assessed against a total of 142 reference
images (Zhu & Woodcock, 2012), the main focus here is to compare
the accuracies computed from the three different scenarios: Landsats
4–7, Landsat 8, and Sentinel 2. A global sample with specific character-
istics of clouds and environments are necessary for this purpose. There-
fore, we selected 7 Landsat 8 images from different parts of the world
(Fig. 1). These images include a variety of environments (including ice
caps, snow, desert, urban, forest, grass, and mountains) and different
kinds of clouds (including some extremely thin cirrus clouds). As
Landsat 8 images have all the spectral bands as Landsats 4–7 images



Table 7
Confusion matrix for assessing Fmask accuracies for the Landsat 8 scenario at Path 233/
Row 61.

Landsat 8 scenario

Ground truth (pixels)

Class Clear
land

Clear
water

Cloud
shadow

Cloud User

Clear land 0 0 0 0 N/A
Clear water 0 1 0 0 100.00%
Cloud shadow 2 0 2 18 9.09%
Cloud 1 0 1 175 98.87%
Producer 0.00% 100.00% 66.66% 90.67% Overall = 89.00%
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and all the spectral bands used by this version of Fmask for Sentinel 2
images (Table 1), we use Landsat 8 images to simulate Landsats 4–7
and Sentinel 2 images as the inputs for the new Fmask algorithm.
Though there are differences in band width, quantization, Signal
Noise Ratio (SNR), and resolution (with Sentinel 2) between differ-
ent sensors, which may influence the results, we assume those influ-
ences are trivial compared to the impacts of include or exclude
certain important spectral bands (the thermal band or the cirrus
band). Due to the large number of tables and figures for the 7 loca-
tions, we will only show Fmask results for one of the images located
in South America (Path 223/Row 61) in the paper. The tables and fig-
ures for the other 6 locations are in the supplementary materials
(Tables S1-S36 & Figs. S1-S42). Also, summary results for all the
tables and figures are presented below.

The SouthAmerica image is located in the Amazon Basin.Most of the
image is covered by primary forests, and there are several rivers in the
image. There are a variety of clouds in this image. Some of them are
quite easy to detect as they are both bright and white. Some of the
clouds are almost invisible in the false color composite (Fig. 1A), but
they show low temperature in the thermal band (Fig. 1B) and high re-
flectance in the cirrus band (Fig. 1C). Most of the thin cirrus clouds are
within the blue color (between 0.01 and 0.03) of the density slice of
the cirrus band TOA reflectance (Fig. 1D). This indicates that if we use
the same threshold (a threshold of 0.03) as theMODIS cloud algorithm,
almost all these thin cirrus clouds (blue color in Fig. 1D) in the Landsat
image will not be found.
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overall accuracies for the Landsat 8 scenario. The green bars show the percent disagreement fo
3.1. Comparing Fmask results between the Landsats 4–7 and the Sentinel 2
scenarios

We first compare Fmask results between Landsats 4–7 and Sentinel
2 for all 7 sites. To assess which scenario is better, we only assess the
areas where the two results differ. For each image, a total of 200 points
are selected based on random sampling within the area where the re-
sults of the two scenarios disagree. Manual interpretation is carefully
done for all 200 points to determine their real categories.

Fig. 3 shows Fmask results for the Landsats 4–7 and the Sentinel 2
scenarios (clouds are yellow, cloud shadows are green, and clear-sky
pixels are black). The Sentinel 2 scenario result (Fig. 3B) detects many
more clouds than the results for the Landsats 4–7 scenario (Fig. 3A).
Most of the clouds that are detected by the Sentinel 2 scenario but
missed by the Landsats 4–7 scenario are thin cirrus clouds with cirrus
band TOA reflectance less than 0.03 (Fig. 2D). Note that there are also
some commission errors in the river areas in the results for the Sentinel
2 scenario (upper-left corner of Fig. 3B). Table 2 illustrates the percent
disagreement for Fmask results between the Landsats 4–7 and the
Sentinel 2 scenarios. Large differences are observed in this Table and
the largest difference (28.35% of the image) is in the category that the
Landsats 4–7 scenario identifies as clear land but the Sentinel 2 scenario
detects as cloud. This means the Sentinel 2 scenario identifies more
clouds than the Landsats 4–7 scenario, which agrees with the visual as-
sessment between Fig. 3A and B. The confusion matrices show that the
Landsats 4–7 scenario (Table 3) misses all cloud pixels (a total of 186
pixels), while the Sentinel 2 scenario (Table 4) has made very few
mistakes (8 out of 186 pixels) in this category. The overall accuracy
for the places that differ between the two results indicates the Sentinel
2 scenario (91%) is dramatically higher than for the Landsats 4–7 sce-
nario (3%). Fig. 4 shows the accuracies of Fmask results for all 7 sites
comparing the Landsats 4–7 and the Sentinel 2 scenarios. The blue
bars are the overall accuracies for the Landsats 4–7 scenario and the
red bars are the overall accuracies for the Sentinel 2 scenario. The
green bars show the percent disagreement for the two Fmask results.
All 7 sites show quite large disagreements in Fmask results, especially
for the images located at Path 199/Row 26 and Path 7/Row 5. For all 7
sites, Sentinel 2 Fmask results are significantly better than Landsats
4–7 Fmask results, especially for the two images located at Path
45/Row 30 and Path 233/Row 61.
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3.2. Comparing Fmask results between the Sentinel 2 and the Landsat 8
scenarios

We compared Fmask results for the Sentinel 2 and the Landsat 8 sce-
narios for all 7 sites. As for the comparison above, for each site a total
of 200 points were selected based on random sampling within the
areas where the results of the two scenarios disagree. We carefully
interpreted a total of 200 reference pixels to determine their real
categories.

Fig. 5 shows that compared to the Fmask results for the Sentinel 2
scenario, Fmask results for the Landsat 8 scenario detect slightly more
clouds (most of them are extremely thin cirrus clouds) and at the
same time the commission errors in the river areas are greatly reduced.
Table 5 illustrates the percent disagreement for Fmask results between
the Sentinel 2 and the Landsat 8 scenarios. The difference between the
Sentinel 2 and the Landsat 8 scenarios is relatively small, with the
largest difference (5.54%) in the category where the Sentinel 2 results
identify pixels as clear land that the Landsat 8 scenario detects as
cloud. This means the Landsat 8 scenario identifies slightly more clouds
than the Sentinel 2 scenario, which agrees with the visual assessment
between Fig. 5A and B. The confusion matrices show that the Sentinel
2 scenario (Table 6) misidentifies most of the cloud pixels (191 out of
193 pixels) as clear land pixels, while the Landsat 8 scenario (Table 7)
hasmade very fewmistakes (18 out of 193) in this category. The overall
accuracy for the Landsat 8 scenario (89%) is much higher than the
Sentinel 2 scenario (3%). Fig. 6 shows the accuracies for all 7 sites for
the Sentinel 2 and the Landsat 8 scenarios. The difference between the
two scenarios is reduced significantly (approximately 10% of the
image). Fmask results for the Landsat 8 scenario are better than Fmask
results for the Sentinel 2 scenario for 6 of the tested sites. There is
only one site in North America (Path 45/Row 30), Fmask result for the
Landsat 8 scenario is better than Fmask result for the Sentinel 2 scenario.
In this particular location, there are large areas of mountains with large
elevation changes (Fig. S3A). As the environment temperature is nega-
tively related with the surface elevation (Hartmann, 1994, Chap. 3),
the measure brightness temperatures for high elevation pixels are
usually much colder for pixels located at lower elevations (Fig. S3B).
These relatively cold pixels can cause problems when the thermal
band is used to calculate the temperature probability, as most of them
will have high temperature probabilities and some of them may be
falsely detected as cloud. For the other 6 sites, the extra thermal band
available for the Landsat 8 scenario improves results relative to the
Sentinel 2 scenario.

4. Discussion

While the sample of images included in this paper is relatively small,
the results demonstrate the relative importance of the cirrus band and
the thermal band in cloud detection. The spectral bands used by the
new Fmask algorithm for the Landsats 4–7 and the Sentinel 2 scenarios
are almost the same, except Sentinel 2 has a cirrus band and Landsats
4–7 has a thermal band. However, the results from the Sentinel 2 and
the Landsats 4–7 scenarios are quite different. Large differences are
observed for all 7 sites and the Sentinel 2 scenario shows much higher
accuracies compared to the Landsats 4–7 scenario. This result indicates
the relative importance of the cirrus band compared to the thermal
band in designing cloud, cloud shadow, and snow detection algorithms.
While it is clearly better to have multispectral optical, thermal and
cirrus bands available for cloud detection, the results in this analysis in-
dicate that if you have to choose between a cirrus band and a thermal
band for cloud detection, a cirrus band is preferable. While this result
may not be repeated in all locations, in general it appears that the cirrus
band is extremely effective in identifying clouds.

Though we have tested the new Fmask algorithm for a total of 7
images at different parts of the world with a variety of environments
(includes ice caps, desert, snow, urban, forest, grass, and mountain
areas), there are still many more places with other kinds of environ-
ments that should be tested. In the future, we will collect more images
for testing the algorithm and assessing the accuracies for the cloud,
cloud shadow, and snowmasks for the three different sensors.Moreover,
it should be remembered that in this paperwe are not using real Sentinel
2 images and we will be able to test the new Fmask algorithm on real
Sentinel 2 images directly when they are available in the future.

5. Conclusion

We developed a new Fmask algorithm that improves the previous
version of the Fmask algorithm and expands the algorithm to screen
cloud, cloud shadow, and snow for Sentinel 2 and Landsat 8 images.
This algorithmworkswell for all three scenarios (Landsats 4–7, Sentinel
2, and Landsat 8). However, due to the different spectral bands each
scenario uses, the Fmask results accuracies are quite different. Fmask re-
sults from the Sentinel 2 scenario shows much better accuracies than
Fmask results from the Landsats 4–7 scenario (much higher accuracy
for all 7 sites). The Landsat 8 scenario performs slightly better than the
Sentinel 2 scenario for most of the environments (higher accuracy for
6 sites). Considering the already high accuracies achieved by the
Landsats 4–7 scenario results (Zhu & Woodcock, 2012), the new
Fmask algorithms designed for Sentinel 2 and Landsat 8 are promising.
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