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Wedeveloped a newalgorithm calledMFmask (Mountainous Fmask) for automated cloud and cloud shadowde-
tection for Landsats 4–8 images acquired inmountainous areas. TheMFmask algorithm, built upon the success of
the Fmask algorithm (Zhu andWoodcock, 2012; Zhu et al., 2015), is designed for cloud and cloud shadow detec-
tion in mountainous areas, where the Fmask algorithm is not performing well. The inputs of the MFmask algo-
rithm include Landsat Top of Atmosphere (TOA) reflectance, Brightness Temperature (BT), and Digital
Elevation Models (DEMs). Compared to Fmask, MFmask can separate water and land pixels better in mountain-
ous areas with the aid of DEMs.Moreover,MFmask produces better cloud detection results than Fmask inmoun-
tainous areas after BT is linearly normalized by DEMs. To provide more accurate cloud shadow detection in
mountainous areas, MFmask uses a double-projection approach to better predict cloud shadow shape on slope
side. Additionally, MFmask applies a topographic correction to remove terrain shadows and estimates cloud
base height with neighboring clouds. Both will reduce the possibility of cloud and cloud shadow mismatch and
increase cloud shadow detection accuracy for places with large topographic gradient. To test the performance
of the proposed MFmask algorithm, a total of 67 Landsat images acquired in mountainous areas from different
parts of the world were selected for assessing the accuracy of cloud detection, in which 15 of them were used
for assessing the accuracy of cloud shadow detection. Compared with Fmask, MFmask can provide substantial
improvements in cloud and cloud shadow detection accuracies for places with large topographic gradient and
also work well for relatively flat terrain.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Landsat images have been widely used in mapping and monitoring
natural resources (Colstoun et al., 2003; Fisher et al., 2016; Gao et al.,
2015). In 2008, the free access policy of the Landsat data has promoted
many time series related applications (Cohen et al., 2010; Huang et al.,
2010b; Kennedy et al., 2010; Schroeder et al., 2011; Zhu et al., 2016).
Nevertheless, many Landsat images are inevitably covered by clouds
and their shadows (Asner, 2001; Ju and Roy, 2008), which limit their
use (Irish et al., 2006). Thepresence of clouds and their shadowswill de-
crease the robustness of geophysical parameters retrieval (He et al.,
2013; Quan et al., 2015), impact data fusion (Gao et al., 2006; Zhu et
al., 2010), increase errors in land cover classification (Li et al., 2012;
Yuan et al., 2005), and cause false positive errors in change detection
(Coulter et al., 2016; Hermosilla et al., 2015).
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Recently, many cloud detection algorithms have been developed for
Landsat images (Choi and Bindschadler, 2004; Hagolle et al., 2010;
Huang et al., 2010a; Irish, 2000; Irish et al., 2006; Jin et al., 2013; Roy
et al., 2010; Wang et al., 1999; Wilson and Oreopoulos, 2013; Zhang et
al., 2002; Zhu and Woodcock, 2012; Zhu et al., 2015), among which
the Fmask (Function of mask) algorithm has shown relatively better
performance in operational cloud detection than the other algorithms
(Foga et al., 2017), and it can also detect cloud shadow and snow. The
Fmask algorithm has been widely used and has been successfully inte-
grated into the Landsat surface reflectance Climate Data Record (CDR)
and Level 1 Quality Assessment (QA) band provided by the U.S. Geolog-
ical Survey (USGS) Earth Resources Observation and Science (EROS)
Center.

Although the Fmask algorithm performs well for Landsat images in
most cases, it has some issues inmountainous areas. First, Fmask detects
cloud over land and water separately, but the water test is not always
accurate. For example, the Fmask algorithm uses a simple water test
of NormalizedDifference Vegetation Index (NDVI) and the Top of Atmo-
sphere (TOA) reflectance of Near Infrared (NIR) band to divide all pixels
into land andwater pixels, whichmay include terrain shadows aswater
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pixels due to their similar dark spectral signatures (Verpoorter et al.,
2012). Second, Fmask assumes that the temperatures from all clear-
sky land pixels in one Landsat image are approximately the same, and
uses their Brightness Temperature (BT) as the basic temperature to cal-
culate cloud temperature probability. This assumption works well for
flat areas, but for mountainous areas, it may not be valid anymore as
temperature varies greatly with elevation. What's more, it may lead to
more commission errors of clouds in high mountain snow/ice areas
because of their similar cold and bright features, subsequently
misidentifying cloud shadows as well (Selkowitz and Forster, 2015).
Third, the original method for calculating cloud shadow assumes that
a cloud and its shadow have a similar shape. This assumption has no
problem in flat areas, but for mountainous areas the cloud shadow
shape will change substantially if it is casted on steep slopes. Fourth,
Fmask searches the location of cloud shadow by calculating the similar-
ity between a cloud and its shadow within an estimated cloud height
range. However, sometimes an inaccurate cloud shadow location may
be determined when the maximum similarity is reached at other dark
features, such as terrain shadows, lakes, and wetlands (Braaten et al.,
2015).

To rectify the above limitations, we developed the MFmask (Moun-
tainous Fmask) algorithm to better detect cloud and cloud shadow for
Landsats 4–8 images in mountainous areas. Digital Elevation Models
(DEMs) are used as the ancillary data for the MFmask algorithm. This
newMFmask algorithm can provide: 1) more accurate water detection;
2) better cloud detection; 3) more accurate prediction of cloud shadow
shape; and 4)more precise prediction of cloud shadow location. The im-
provements are especially noticeable for mountainous areas with large
topographic gradient.

2. MFmask inputs and validation data

2.1. MFmask inputs

Besides TOA reflectance and BT that are used by the original Fmask
algorithm (Zhu and Woodcock, 2012; Zhu et al., 2015), MFmask also
uses DEM data. TOA reflectance and BT are derived from the observa-
tions of Thematic Mapper (TM), Enhanced Thematic Mapper-Plus
(ETM+), and Operational Land Imager/Thermal Infrared Sensor (OLI/
TIRS) (in Table 1). DEM data are extracted from the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Global DEM Version 2 (NASA JPL, 2009). DEM derivatives, such as
slope and aspect, are also used.

2.2. Validation data

A total of 142 Landsat images located in nine latitudinal zones were
used to validate Fmask (Zhu andWoodcock, 2012). We downloaded all
the 142 Landsat images from the USGS website (https://landsat.usgs.
gov/landsat-7-cloud-cover-assessment-validation-data). Most of them
Table 1
Landsat TM, ETM+, and OLI/TIRS spectral bands. The spectral bands used in the MFmask
algorithm are highlighted in bold letters.

Landsat 4–5 TM bands
(μm)

Landsat 7 ETM+ bands
(μm)

Landsat 8 OLI/TIRS bands
(μm)

Band 1 (0.45–0.52) Band 1 (0.45–0.515) Band 1 (0.43–0.45)
Band 2 (0.52–0.60) Band 2 (0.525–0.605) Band 2 (0.45–0.51)
Band 3 (0.63–0.69) Band 3 (0.63–0.69) Band 3 (0.53–0.59)
Band 4 (0.76–0.90) Band 4 (0.75–0.90) Band 4 (0.64–0.67)
Band 5 (1.55–1.75) Band 5 (1.55–1.75) Band 5 (0.85–0.88)
Band 6 (10.40–12.50) Band 6 (10.40–12.50) Band 6 (1.57–1.65)
Band 7 (2.08–2.35) Band 7 (2.09–2.35) Band 7 (2.11–2.29)

Band 8 (0.52–0.90) Band 8 (0.50–0.68)
Band 9 (1.36–1.38)
Band 10 (10.60–11.19)
Band 11 (11.50–12.51)
were acquired fromdifferent locations (Path/Row), but sometimesmul-
tiple images may be acquired at different dates from the same location.
There are manual cloud masks for all images, but only 26 of them have
manual cloud shadow masks. The manual masks were produced by
manual visual interpretation of full resolution images in Adobe
Photoshop using different combinations of bands by USGS image ana-
lysts (Scaramuzza et al., 2012). Meanwhile, 11 of them were randomly
examined by all analysts to obtain the approximate error of themanual
masks, and the average difference of those manual masks was around
7% (Oreopoulos et al., 2011). The manual masks were designed to sys-
tematically cover the full range of global environments and cloud condi-
tions (Irish et al., 2006).

To demonstrate the advantages of MFmask in mountainous regions,
we selected the images where DEMs differ more than 500 m, which
gives us 67 images and in which 17 of them also have cloud shadow
masks. We further excluded two Landsat images in cloud shadow anal-
ysis, due to the large omission or commission errors in themanual cloud
shadowmasks. Therefore, we used 67 images for assessing the accuracy
of cloud detection, and 15 images for assessing the accuracy of cloud
shadow detection (Fig. 1). The average elevation difference of all the
67 images is approximately 1.52 km, in whichmost of the elevation dif-
ferences are less than 2 km, and only 9 images with elevation differ-
ences more than 2 km (Fig. 2). Moreover, the cloud cover percentages
among the 67 images also vary substantially, with most of the images
having cloud cover around 10%, and the rest of them uniformly distrib-
uted between 20% and 100% (Fig. 3).

3. The MFmask algorithm

TheMFmask algorithm is developed based on the latest Fmask algo-
rithm (3.3 version; https://github.com/prs021/fmask), and the detailed
flowchart of the improvements made by MFmask is shown in Fig. 4. As
the original Fmask algorithm has been well documented by Zhu and
Woodcock (2012) and Zhu et al. (2015), wewillmainly focus on the im-
provements we have made in this study.

3.1. Water detection

The Fmask algorithm produces amask for cloud over land andwater
separately, therefore, we need to classify water pixels before cloud de-
tection is performed. However, the “Water Test” of Fmask relies heavily
on two thresholds of NDVI and the NIR band, which may misidentify
terrain shadows as water because the spectral response of water is
quite similar as terrain shadows (Verpoorter et al., 2012). To classify
water pixels more accurately in mountainous areas, MFmask combines
a slope threshold with value of 10° with the original “Water Test” (Eq.
(1)). The reason why 10° is chosen as the threshold is that the slope of
water body is generally less than 10°, but terrain shadows are usually
higher (Lu et al., 2011). This minor modification will remove many
false positive water pixels (contributed by terrain shadows) from the
final water mask.

Water Test ¼ NDVIb0:01 and Band NIRb0:11ð Þð or
NDVIb0:1 and Band NIRb0:05ð Þ Þ
and Slopeb10 °

ð1Þ

3.2. Cloud detection

The Fmask algorithm estimates the cloud probability of land pixels
by integrating the temperature probability, which is calculated by
using the lower level (Tlow) and the upper level (Thigh) of the clear-sky
land pixels' BT within the entire image (Eq. (2)). The clear-sky pixels
are identified by the pass one of Fmask,which combines several spectral
tests to select the pixels that 100% cloud-free in the Landsat image. Tlow
and Thigh are calculated from the 17.5 and 82.5 percentile of clear-sky

https://landsat.usgs.gov/landsat-7-cloud-cover-assessment-validation-data
https://landsat.usgs.gov/landsat-7-cloud-cover-assessment-validation-data
https://github.com/prs021/fmask


Fig. 1.Distribution of Landsat images for validating theMFmask algorithm. The red rectangles show the coverage of Landsat imageswithmanual cloudmasks, and theblue rectangles show
the coverage of Landsat images with both manual cloud and cloud shadow masks. The elevation background was rendered using the Global 30 Arc-Second Elevation (GTOPO30) data
(https://lta.cr.usgs.gov/GTOPO30). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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land pixels' BT, which provide the temperature interval for clear-sky
land pixels (Zhu and Woodcock, 2012). Finally, clouds over land can
be identified by a dynamic threshold from the cloud probability of all
clear-sky land pixels.

lTemperatrue Prob ¼ Thigh þ 4−BT
� �

= Thigh þ 4− Tlow−4ð Þ� � ð2Þ

The original Fmask has accounted for the brightness temperature
variation at scene level, but it is not sufficient for mountainous areas
where the environmental temperature can widely vary with large ele-
vation changes. The environmental temperature commonly indicates
air temperature, but it is also affected by surface temperature
(Sandholt et al., 2002). As the environmental temperature is often neg-
atively related to elevation, clear-sky land pixels with high elevations
are usually having lower temperature than the pixels with relatively
low elevations (Lookingbill and Urban, 2003), which makes a scene-
based threshold problematic. To overcome this problem, we used BT
as a proxy for the environmental temperature and built a linear lapse
Fig. 2. Histogram of the elevation differences of the 67 reference images.
rate model to normalize it based on the DEM, which assumes that the
temperature linearly changes with the elevation (Lookingbill and
Urban, 2003). The BT normalization processes are introduced in
Section 3.2.1 and Section 3.2.2.

3.2.1. Calculation of lapse rate
To establish the temperature-elevation relationship, MFmask uti-

lizes a simple linear lapse rate model (Eq. (3)) (Lookingbill and Urban,
2003).

T x; yð Þ ¼ t0 þ γ � E x; yð Þ þ ε ð3Þ

where,
T is the measured BT in Celsius degrees,
E is the elevation in kilometers,
(x,y) is a pixel's location for the Landsat image,
γ is the slope, which represents the temperature lapse rate in Celsius

degrees per kilometer,
Fig. 3. Histogram of the visual cloud cover percentage of the 67 reference images.
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Fig. 4. The flowchart of the improvements made by the MFmask algorithm.
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t0 is the intercept, which represents the temperature in Celsius de-
grees at 0 elevation,ɛ is the error of regression.

The lapse rate will be estimated based on the clear-sky land pixels
previously identified by the original Fmask. To exclude other environ-
mental influences that usually make clear-sky pixel temperatures
colder or warmer (e.g., snow/ice and urban heat island), MFmask only
selects those pixels between the lower level (17.5 percentile) and the
upper level (82.5 percentile) of clear-sky land temperatures as the can-
didate pixels for estimating the linear model. Among all the clear-sky
land pixels, we employed a stratified random sampling approach (ran-
domly select equal number of clear-sky land pixels in every 0.3 km
along elevation) to obtain a total of 50,000 pixels to calculate the tem-
perature lapse rate γ in linear regression. The reason for choosing
0.3 km is that the variability of all clear-sky land pixels' BT in each sub-
group is lowest when they are grouped in every 0.3 km (Fig. 5). At the
same time, to reduce the redundancy of those selected pixels, we also
integrated a 450 m distance rule into this sampling process (Munroe
et al., 2004).

As an example of the linear regression analysis (Fig. 6a), there are
many clear-sky land pixels identified within the Landsat 7 ETM+
image acquired at Path 36/Row 37 onMay 1, 2001. Based on the sample
pixels, a linear regression model can be estimated (Fig. 6a), and the
slope represents the temperature lapse rate γ within the image (γ =
−5.39 °C km−1). In this case, R2 is relatively lowbecause the spatial var-
iation of temperature may be affected by many physiographic factors,
Fig. 5. The selection of stratified elevation by analyzing all 67 reference images. For each
stratification of elevation, the overall variances of clear-sky land pixels' BT were
calculated by the mean of variances of all clear-sky land pixels' BT from all 67 reference
images. Note that the lowest variance is achieved when the subgroups are stratified in
every 0.3 km.
such as elevation, surface condition, air moisture content, and wind
speed (Kattel et al., 2013).

In some specific cases, when other physiographic factors have great-
er impacts on temperature variation than elevation, the lapse rate γ de-
rived from regression may not be real. Therefore, when the estimated
lapse rate γ is larger than 0 °C km−1 or the linear regression model is
not statistical significance at 0.05 level, MFmask will set γ to be 0
°C km−1, which means the effect of elevation change on temperatures
is not significant, and the original Fmask method will be adopted.

3.2.2. Temperature normalization
To reduce the temperature variability caused by elevation change,

MFmask normalizes the BT of all pixels onto a “reference plane”,
which is defined as a horizontal plane located at the lowest elevation
of the Landsat image. The lowest elevation can be obtained from
DEMs. When the lapse rate γ has been calculated using the clear-sky
land pixels (Section 3.2.1), the BT of all pixels can be linearly normalized
by Eq. (4).

NT x; yð Þ ¼ Tðx; yÞ−γ � Eðx; yÞ−Eref
� � ð4Þ

where,
NT is the normalized BT in Celsius degrees,
Eref is the reference plane's elevation in kilometers.
As a result of temperature normalization using the lapse rate γ (Fig.

6b), the clear-sky land pixels normalized by MFmask were plotted to
show the relationship between temperature and elevation within the
Landsat 7 ETM+ image acquired at Path 36/Row 37 on May 1, 2001.
Fig. 6a shows that the temperature of clear-sky land pixels decreases
with the increasing elevation, while after normalization, there is no ob-
vious relationship between the elevation and the temperature for the
clear-sky land pixels (Fig. 6b).

Since the normalized BT can reduce the influence from elevation
change, MFmask takes it as input to detect cloud over land.

3.3. Cloud shadow shape

The Fmask algorithm predicts cloud shadow shape assuming that
the shapes of cloud objects are similarwith their shadows. The cloud ob-
jects are derived by segmenting the cloud layer, that is, all cloud pixels
8-connected to each other are identified as one cloud object (Zhu and
Woodcock, 2012). However, the assumption may not be valid when
the cloud shadows are projected on steep slopes. Fig. 7 shows the
cloud shadow shape observed in the image would be quite different
from the shape of the corresponding cloud when a cloud shadow is
projected on a slope side. Note that the location of real cloud shadow
is also slightly shifted compared with the flat reference plane. To ac-
count for this shape change, MFmask applies a “double-projection” ap-
proach with integration of DEMs to better predict cloud shadow shape
in Landsat image. The basic idea of this double-projection approach is
that based on the geometric relationship between a cloud and its shad-
ow, we can firstly project the cloud shadow onto the reference plane
(hereafter called “referenced cloud shadow”), and later the cloud shad-
ow in Landsat image (hereafter called “imaged cloud shadow”) can be
obtained by back projecting the referenced cloud shadow onto the
DEMmap along the sunlight direction.

The first projection directly projects cloud shadow onto the refer-
ence plane similarly as Fmask (Zhu and Woodcock, 2012), except that
the cloud base height (Hc) used in MFmask is relative to the horizontal
reference plane rather than the real surface (Fig. 8). This projection is
based on the solar-sensor geometry (Fig. 8): the sensor viewing zenith
angle (θv), the sensor viewing azimuth angle (φv), the solar zenith
angle (θs), the solar azimuth angle (φs), and the cloud base height
(Hc). Note that the first four factors are already known. At the same
time, we followed the Fmask method to estimate the cloud base height
(Hc), but used the normalized BT and took account of DEMs (Eq. (5)).

Image of Fig. 4
Image of Fig. 5


Þ

Fig. 6. Temperature normalization for a Landsat 7 ETM+ image acquired at Path 36/Row 37 on May 1, 2001 (BT: Brightness Temperature). (a) The original BT versus the elevation for all
clear-sky land pixels in the Landsat image. A linear regressionmodel (γ=−5.39 °C km−1, R2= 0.54) can be estimated based on the stratified samples. (b) The normalized BT versus the
elevation for all clear-sky land pixels. The colors indicate the density of the scatter plot. (For interpretation of the references to color in this figure legend, the reader is referred to theweb
version of this article.)
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Based on the five variables, the referenced cloud shadow can be calcu-
lated by using the discretization projection (Eqs. (6) and (7)) for pixels
of each cloud object (the first projection). Note that the position of
clouds in Landsat image (observed by the sensor) will be different
from the position of real clouds.

Hc ¼ from max 0:2þ ΔEc; NTlow−4−Tcloud baseð Þ=9:8ð Þ
to min 12þ ΔEc; NThigh þ 4−Tcloud base

� �� �� �
km ð5Þ

where,
NTlow and NThigh represent the lower (17.5 percentile) and upper

(82.5 percentile) level of the clear-sky land pixels' normalized BT,
respectively,

ΔEcrepresents the elevation difference between cloud's underlying
surface and the horizontal reference plane (derived from DEMs),

Tcloud_base denotes the original BT of cloud object, which is defined in
the Fmask algorithm (Zhu and Woodcock, 2012).

xr; yrð Þ ¼ xc þ Hc−ΔEcð Þ � tanθv � sinφv; yc− Hc−ΔEcð Þ � tanθv � cosφvð
ð6Þ

xp; yp
� �

¼ xr−Hc � tanθs � sinφs; yr þ Hc � tanθs � cosφsð Þ ð7Þ

xs; ysð Þ ¼ xp þ Hs � tanθs � sinφs; yp−Hs � tanθs � cosφs

� �
ð8Þ

where,
Fig. 7. Illustration of the shape change of cloud shadow on slope side. “Horizontal
reference plane” is the horizontal plane located at the lowest elevation of a Landsat
image (see Section 3.2.2). “Imaged cloud shadow” is the cloud shadow observed by
Landsat. “Real cloud shadow” is the cloud shadow casted on slope side in the actual
environment. “Referenced cloud shadow” is the shadow directly projected onto the
horizontal reference plane.
θv is the sensor viewing zenith angle in degrees,
φv is the sensor viewing azimuth angle in degrees,
θs is the solar zenith angle in degrees,
φs is the solar azimuth angle in degrees,
(xc,yc) is the cloud position observed by the sensor (already known

in the cloud detection),
(xr,yr) is the real cloud position,
(xp,yp) is the referenced cloud shadow position (calculated by the

first projection),
(xs,ys) is the imaged cloud shadow position (calculated by the sec-

ond projection),
Hc is the cloud base height relative to the horizontal reference plane

(calculated by Eq. (5)),
Hs is the height of the imaged cloud shadow relative to the reference

plane (derived from DEMs).
The second projection calculates the imaged cloud shadow by back

projecting the referenced cloud shadow (calculated from the first pro-
jection) onto the DEM map (geometrically registered with Landsat
image) along the sunlight direction (Fig. 8). This back projection is
based on the simple solar geometry: the solar zenith angle (θs), the
solar azimuth angle (φs), and the imaged cloud shadow height (Hs).
Note that the imaged cloud shadow height (Hs) is also relative to the
same reference plane, which can be easily calculated byDEMdifference.
Ideally, the imaged cloud shadow can be predicted from the referenced
cloud shadowby Eq. (8). Though the solar zenith angle (θs) and the solar
azimuth angle (φs) are known, the imaged cloud shadow height (Hs)
cannot be derived from the corresponding DEM data before determin-
ing the imaged cloud shadow position (xs,ys). In this case, Eq. (8) cannot
be solved directly. Therefore, we projected each pixel of the DEM map
(including all pixels of the imaged cloud shadow) onto the reference
plane (including all pixels of the referenced cloud shadow) along the
sunlight direction following Eq. (8) and constructed a pixel-position re-
lation table between the imaged cloud shadow and the referenced cloud
shadow{((xsk,ysk), (xpk,ypk)), k= 1,…,n}, where (xsk,ysk) is the imaged cloud
shadow position of the kth pixel, (xpk,ypk) is the referenced cloud shadow
position of the corresponding kth pixel, and n is the total number of the
pixels in image. The imaged cloud shadow can be determined by
searching the pixel-position relation table for pixels of each referenced
cloud shadow object (the second projection).

3.4. Cloud shadow location

The Fmask algorithm finds cloud shadow from a potential cloud
shadow layer by iterating cloud height within a limited range (Zhu
and Woodcock, 2012). The locations of cloud shadows are determined
by the similarity match between clouds and their shadows. However,
for mountainous areas, dark features, such as terrain shadows, lakes,

Image of Fig. 6
Image of Fig. 7


Fig. 8. Illustration of the double-projection for cloud and cloud shadowmatching. (a) 3D geometry. (b) 2D geometry projection. Note that the sensor viewing zenith angle (θv), the sensor
viewing azimuth angle (φv), the solar zenith angle (θs), and the solar azimuth angle (φs) are known. C (xc,yc) is the cloud position observed by the sensor. R (xr,yr) is the real cloud position.
P (xp,yp) is the referenced cloud shadow position (first projection). S (xs,ys) is the imaged cloud shadow position (second projection). Hc is the cloud base height relative to the horizontal
reference plane (calculated by Eq. (5)).ΔEc is the elevation difference between cloud's underlying surface and the horizontal reference plane (derived from DEMs).Hs is the imaged cloud
shadow height relative to the horizontal reference plane (derived from DEMs).
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and wetlands, may confuse the Fmask similarity match and result in
wrong cloud shadow locations (e.g., early false match). To rectify
these limitations, MFmask removes terrain shadows by a topographic
Fig. 9. Flowchart of searching cloud shadow location in MFmask. The gray
correction model and estimates a cloud base height with neighboring
clouds to reduce the confusions from other dark features. The details
in searching cloud shadow location in MFmask are shown in Fig. 9.
parts represent the improvements made in the MFmask algorithm.

Image of Fig. 8
Image of Fig. 9


Fig. 10. An example of choosing the number of neighboring clouds based on sensitivity
analysis. Note that 14 neighboring cloud objects achieved the highest average
producer's accuracy in cloud shadow detection.
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3.4.1. Remove terrain shadows
We utilized the sun-canopy-sensor with a semiempirical moderator

(SCS + C) correction (Soenen et al., 2005) to remove terrain shadows
for the NIR and Short Wave Infrared (SWIR) bands. The correction is
expressed as follows:

ρ0 ¼ ρ � cos θn � cos θs þ C
cos iþ C

ð9Þ

where,
ρ′ is the normalized reflectance,
ρ is the uncorrected reflectance,
θn is the terrain slope in degrees,
i is the solar incidence angle in relation to the normal on a pixel,
C is a parameter that can be analogous to the effects of diffuse sky ir-

radiance (Teillet et al., 1982).
The cosine of i is calculated using the following equation:

cos i ¼ cos θs � cos θn þ sin θs � sin θn � cos φs � φnð Þ ð10Þ

where, φn is the aspect in degrees.
The solar zenith angle (θs) and the solar azimuth angle (φs) are

known, while all proposed topographic variables (the terrain slope θn
and the aspectφn) are derived fromDEMs. The parameter C can be com-
puted by the ratio between intercept and slope of the regression line
(Eq. (11)) from the statistical-empirical approach (Teillet et al., 1982).
It assumes that there is a linear relationship (Eq. (12)) between uncor-
rected reflectance ρ and cos i for the clear-sky land pixels generated by
the cloud detection (see Section 3.2). The sample pixels used to estimate
the empirical parameter C are stratified on the cos i with 0.1
increasement (Reese and Olsson, 2011). The random clear-sky land
pixels within each cos i strata have equal allocation (a total of
50,000 pixels).

C ¼ a
b

ð11Þ

ρ ¼ aþ b � cos i ð12Þ

3.4.2. Estimate cloud base height with neighboring clouds
Although the terrain shadows have been removed, the potential

cloud shadow layer may still include other dark features, such as lakes
and wetlands. To further reduce their impacts on the calculation of
cloud shadow locations, the MFmask algorithm estimates a cloud base
heightwith neighboring clouds and applies it to assist cloud shadowde-
tection, assuming neighboring cloud objects have similar cloud base
heights.

Normally, the height of the neighboring clouds should be close to
each other, and Berendes et al. (1992) suggested that the standard devi-
ation of cloud heights is within a small range (from 0.1 to 0.15 km).
Therefore, the MFmask algorithm uses the statistics of heights of the
previously calculated neighboring clouds (close in distance) to estimate
the new cloud height. The neighboring clouds can be obtained by calcu-
lating the distances between the centers of two cloud objects. However,
sometimes the obtained neighboring clouds are relatively dispersed or
some clouds are substantially higher than the clouds nearby (e.g., cirrus
clouds), the estimated cloud height from this method will be no longer
accurate. Therefore, MFmask will only estimate cloud height when the
standard deviation of the neighboring clouds is less than 1 km.

The estimated cloud base height is determined by the upper level
(82.5 percentile) of the matched heights of 14 neighboring clouds. The
upper level (82.5 percentile) is used to exclude the overestimated
cloud heights. The number of neighboring cloud objects was deter-
mined by the sensitivity analysis (Fig. 10). Considering that the cloud
shadowproducer's accuracy ismore important than the user's accuracy,
we selected the one (14 neighboring cloud objects) with the highest
average producer's accuracy based on a set of 15 mountainous Landsat
reference images (see Section 2.2 for details). To further ensure that
the new cloud is not far from its obtained neighboring clouds, the esti-
mated cloud height is available only when it is between the previously
estimated minimum height and the maximum height (Eq. (5)).

The estimated cloud height is used to assist the prediction of cloud
shadow location. In the MFmask algorithm, the search of cloud shadow
location will not stop until it reaches this estimated cloud height. The
cloud shadow ismatchedwith cloudwhen the similarity getsmaximum
during thewhole search process (Fig. 9). If there aremultiplemaximum
similarities, MFmask selects the onewith the cloud height closest to the
estimated cloud height. Note that if the estimated height is not avail-
able, the location of cloud shadow will be determined by the original
Fmask's searching rule.

4. MFmask results and accuracy assessment

4.1. MFmask results

As the improvements are particularly noticeable for mountainous
regions, we displayed MFmask results for some typical mountainous
images that have large topographic changes. By comparing the results
between MFmask and Fmask visually (Fig. 11a, b, c, d, and e), MFmask
shows better performance in detecting cloud and cloud shadow in
mountainous areas. Fig. 11a shows the results of a Landsat 7 ETM+
image located in theHimalayasMountainswith large elevation changes
and covered with thick cumulus clouds. Compared with Fmask,
MFmask shows better cloud detection in the areas with low elevation
(less omission errors). Fig. 11b shows the results of a Landsat 7 ETM+
image located in the Alps Mountains, where thin clouds cover the
areas with low elevation. The results also demonstrate that MFmask re-
sults are more accurate in capturing some of the thin clouds located at
the lower side of the image. Fig. 11c shows the results of one Landsat
7 ETM+ image located in the Caucasus Mountains, with a mixture of
thin clouds and bright mountain snow/ice. Both algorithms show large
commission errors in cloud and cloud shadow detection, however, the
commission errors in MFmask are substantially reduced compared
with Fmask. Additionally, Fig. 11d shows the results of a Landsat 7
ETM+ image located in the Longmen Mountains, where there are
large terrain variations in the southwest. By checking the subset
masks (see red arrows), we can see that MFmask identifies the cloud
shadowsmore accurately than Fmask. Finally, Fig. 11e shows the results
of a Landsat 7 ETM+ image located in the Air Mountains. In this loca-
tion, there are large areas of volcanic outcrops with dark features.
Fmask fails to capture the corresponding shadows for clouds over the
large dark features. However, MFmask correctly identifies the shadows
of those clouds (see red arrows).

Image of Fig. 10
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Fig. 11. Comparison of MFmask and Fmask for five Landsat 7 ETM+ images from mountainous areas. (a) Located in Himalayas Mountains, Kaski, Nepal (p142_r40 and 19990924). (b)
Located at Alps Mountains, Bergamo, Italy (p193_r28 and 20030401). (c) Located at Caucasus Mountains, Chereksky, Kabardino-Balkar Republic (p171_r30 and 20011127). (d)
Located at Longmen Mountains, Sichuan, China (p129_r40 and 20020804). (e) Located at Air Mountains, Agadez, Niger (p189_r47 and 20010805). The upper images in panels a, b,
and c are enlargements of the lower entire images with a size of 60 × 60 km2. The upper images in panels d and e are enlargements of the lower entire images with a size of 15
× 15 km2. The reference images in panels a, d, and e are shown with Bands 4, 3, and 2 composited. The reference images in panels b and c are shown with Bands 5, 4, and 3
composited. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

115S. Qiu et al. / Remote Sensing of Environment 199 (2017) 107–119
4.2. MFmask validations

We have validated the cloud and cloud shadow detection accu-
racies from MFmask and compared with Fmask. Note that the de-
fault Fmask algorithm dilates 3 pixels for both clouds and cloud
shadows as a default post-processing to reduce omission errors. In
this assessment, as we do not want to let this dilation influence
our accuracy, we did not dilate our clouds. However, as cloud
shadows are relatively small, we dilated cloud shadows by 3 pixels
in our assessment.
4.2.1. Cloud mask validation
The assessment of the cloud masks from MFmask was compared

against an accompanying assessment of Fmask based on the same
67 manual cloud masks (Fig. 1). Three different accuracies (Eqs.
(13)–(15)) were used to assess their accuracy, including cloud over-
all accuracy, cloud producer's accuracy, and cloud user's accuracy.

Cloud overall accuracy

¼ agreement between manual mask and algorithm mask
total pixels

ð13Þ

Cloud producer
0
s accuracy

¼ agreement of cloud
agreement of cloudþ omission of cloud

ð14Þ

Cloud user
0
s accuracy

¼ agreement of cloud
agreement of cloudþ comission of cloud

ð15Þ

Image of Fig. 11


Fig. 14.MFmask results for the Landsat 7 ETM+ image (p158_r72 and 20011116) where
the temperature is positively related to the elevation. The upper left image shows the false
color composited Landsat image (Bands 4, 3, and 2). The upper right image shows the
MFmask cloud (yellow) and cloud shadow (green) mask. The lower left image shows
the thermal band (BT). The lower right image shows the corresponding DEM data. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 12. Average cloud accuracies between MFmask and Fmask.
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At the pixel level, the average overall accuracy of the MFmask algo-
rithm is 96.20%, which is 0.06% higher than Fmask (96.14%) (Fig. 12).
For cloud cover less than 5%, cloud producer's and user's accuracies
were not analyzed, as they will be greatly influenced by the boundary
pixels. The average cloud producer's accuracy of MFmask is 91.02%,
which is slightly higher than that of Fmask at 90.92% (Fig. 12). More-
over, the average cloud user's accuracy of MFmask is 88.59%, which is
also better than Fmask (88.42%) (Fig. 12).

Though the MFmask algorithm shows better accuracies in cloud de-
tection, the improvement is less than what we have expected. This is
mostly because MFmask will only show better results than Fmask
when there is a strong negative relationship between BT and DEMs.
However, there are many times when the lapse rate is close or equal
to 0 °C km−1 (Fig. 13). The slope of the relationship is smaller or even
sometimes positive (higher DEM has higher BT), as other factors (e.g.,
surface condition, air moisture content, and wind speed) can also influ-
ence the temperature (Kattel et al., 2013). In this specific case, MFmask
will obtain an insignificant lapse rate and produce a similar cloud mask
to Fmask. Fig. 14 shows one Landsat 7 ETM+ image where pixels with
higher elevation present higher temperature than pixels with relatively
lower elevation. Although the linear model can be built in this case, the
estimated lapse rate is more than 0 °C km−1, which will be set to be 0
°C km−1 (no normalization) making MFmask produce the same results
as Fmask. Additionally, the observed cloud detection improvements
from MFmask are also affected by cloud cover condition. For example,
if cloud cover is extremely high, there may not be enough clear-sky
pixels for MFmask to robustly estimate the lapse rate, particularly
when the clear-sky pixels are located in relatively flat areas.

To better demonstrate the improvements, we conducted another
comparison between MFmask and Fmask cloud results for all images
where the two algorithms differ by more than 0.5%. Fig. 15 shows that
if there are large disagreements between the two methods, MFmask
shows substantially higher accuracies, except for two images in
Fig. 13. Histogram of the estimated lapse rates for the 67 reference images.
southern Chile (p230_r94 and p229_r97). By carefully checking the
manual cloud masks of the two images, we found that the manual
masks for the two images are not accurate, asmany clouds are not iden-
tified in the manual masks.

4.2.2. Cloud shadow mask validation
The validation of the cloud shadow detection was conducted using

all 15 reference images with manual cloud shadow masks (Fig. 1).
Two different accuracies (Eqs. (16) and (17)) were used to assess the
accuracy of MFmask cloud shadow results, including producer's and
user's accuracy. Due to the small size of cloud shadows, the cloud shad-
ow overall accuracy was not used for accuracy assessment.

Cloud shadow producer
0
s accuracy

¼ agreement of cloud shadow
agreement of cloud shadowþ omission of cloud shadow

ð16Þ

Cloud shadow user
0
s accuracy

¼ agreement of cloud shadow
agreement of cloud shadowþ comission of cloud shadow

ð17Þ

Table 2 shows the validation of MFmask and Fmask cloud shadow
results. The cloud shadow masks created by MFmask provide continu-
ously higher producer's and user's accuracies in all tested images
(Table 2). The average cloud shadow producer's accuracy of MFmask
is 89.35%, which is a substantial improvement over Fmask (86.64%). At
the same time, the average cloud shadow user's accuracy of MFmask
is 35.90%, which is also a substantial improvement over Fmask
(31.23%). Note that the relatively lower user's accuracy for cloud shad-
ow is mainly caused by the 3 pixels' buffer in both algorithms.

5. Discussions and conclusion

This study presented a new method (MFmask) for detecting cloud
and cloud shadow by integrating DEMs into the original Fmask algo-
rithm, which aims to improve the Fmask results for mountainous
areas. The MFmask algorithm made several improvements in cloud

Image of Fig. 13
Image of Fig. 14
Image of Fig. 12


Fig. 15. The cloud detection overall accuracies between MFmask and Fmask for all images with disagreement more than 0.5%. The red bars are the percentage of disagreement between
MFmask and Fmask results. The yellowbars are theMFmask overall accuracies, and the bluebars are the Fmask overall accuracies. (For interpretation of the references to color in thisfigure
legend, the reader is referred to the web version of this article.)
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and cloud shadow detection based on the original Fmask algorithm for
mountainous areas.

For cloud detection, the Fmask algorithm detects cloud over land
and water separately, but the water mask in Fmask may be confused
with terrain shadows because of their similar spectral response. To ad-
dress this problem, a slope rule was applied to exclude most of terrain
shadows out of a water mask. Moreover, a linear lapse rate model was
used to alleviate temperature variations along elevation gradients in
cloud detection. The Fmask algorithm assumes the temperature from
all clear-sky land pixels in one Landsat image is approximately the
same, and this assumption is reasonable for flat areas, but is not valid
for mountainous areas. The MFmask algorithm employed a linear
lapse rate mode to normalize BT, reducing its variations caused by ele-
vation change in mountainous areas. However, the weak or positive re-
lationship between temperature and elevation sometimesmay result in
a meaningless lapse rate (approximately 0 °C km−1 or greater), as it is
also influenced by other factors (e.g., cloud cover condition and surface
condition). In those specific cases, MFmask will not trigger the BT nor-
malization process, and generate almost the same cloud masks as
Fmask does. This approach not only performs well in mountainous
areas, but it is also workable over the relatively flat terrain where
Table 2
MFmask and Fmask cloud shadow detection accuracies.

Landsat images Producer's
accuracies

User's accuracies

Date Path/Row Sun elevation (°) MFmask Fmask MFmask Fmask

20010205 p1_r75 55.37 79.12% 78.40% 27.91% 23.14%
20010324 p26_r46 57.00 95.09% 93.38% 20.23% 18.21%
20010615 p31_r43 66.29 95.04% 93.93% 54.13% 48.55%
20010814 p35_r42 62.20 94.34% 91.32% 18.98% 17.98%
20010613 p49_r22 55.96 93.96% 91.96% 42.68% 32.98%
20011029 p71_r87 51.87 93.32% 90.19% 42.14% 40.12%
20011103 p74_r91 49.04 89.09% 84.81% 13.24% 12.64%
20010703 p118_r40 65.82 94.09% 89.94% 20.21% 17.14%
20010803 p143_r21 48.95 96.53% 92.67% 39.45% 35.48%
20010422 p158_r72 46.98 94.79% 88.03% 26.26% 24.82%
20011111 p171_r82 58.60 88.19% 85.88% 48.72% 41.89%
20010805 p189_r47 62.92 58.32% 55.88% 52.18% 47.68%
20010511 p195_r26 55.42 85.45% 83.18% 47.62% 40.34%
20011226 p230_r92 51.62 93.38% 92.59% 39.10% 29.64%
20011226 p230_r94 49.91 89.60% 87.46% 45.59% 37.91%
Average 89.35% 86.64% 35.90% 31.23%
minor elevation differences will result in a lapse rate at near-zero level
(no BT normalization).

For cloud shadow detection, a double-projection approach was de-
signed to provide more accurate prediction of cloud shadow shape.
The prediction of cloud shadow in the original Fmask method assumes
that a cloud and its shadow have a similar shape, but it cannot handle
the shape change of cloud shadow on slope side. MFmask projects
cloud shadow onto the reference plane, and later back projects it into
Landsat image based on a DEM derived pixel-location table. This dou-
ble-projection approach can handle the shape change of cloud shadow
on slope side and predict cloud shadow shape more accurately. Addi-
tionally, a topographic correction model and an estimated cloud height
with neighboring clouds were used to improve the prediction of cloud
shadow location. The Fmask algorithm may inaccurately calculate
cloud shadow location due to confusion with dark features (e.g., terrain
shadows, lakes, and wetlands). In the MFmask algorithm, terrain
shadows were removed out of potential cloud shadows by applying
the SCS + C correction to the NIR and SWIR bands. Meanwhile, an esti-
mated cloud base height with neighboring clouds was used to reduce
the mismatch contributed by other dark features. This approach can
also improve cloud shadow detection for non-mountains Landsat im-
ages containing dark features other than terrain shadows, such as
lakes and wetlands. Those improvements in MFmask lead to consistent
increases in the accuracies of the cloud shadow detection compared
with Fmask (Table 2).Moreover, the improvements ofMFmask are gen-
erally larger under lower sun elevation conditions when the cloud
Fig. 16. The improvement of producer's accuracy of cloud shadow detection of MFmask
versus sun elevation for the 15 reference images with manual cloud shadow masks.

Image of Fig. 15
Image of Fig. 16
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shadow shape and location aremore sensitive tomountainous topogra-
phy (Fig. 16).

Accuracy assessment was conducted using a total of 67 Landsat ref-
erence images covering mountainous areas, where the cloud masks
generated by MFmask are slightly better than Fmask (Fig. 12), with a
cloud overall accuracy of 96.20% (96.14% in Fmask), cloud producer's ac-
curacy of 91.02% (90.92% in Fmask), and cloud user's accuracy of 88.59%
(88.42% in Fmask). In another comparison based on 10 images where
the two algorithms yield large differences, MFmask shows substantially
higher accuracies (Fig. 15). Moreover, MFmask achieves much better
cloud shadow detection accuracies than Fmask for the tested 15 moun-
tainous reference images (Table 2). Overall, these results demonstrate
the importance of integrating DEM data in designing cloud and cloud
shadow detection algorithms, especially for mountainous areas.

Although MFmask has improved cloud and cloud shadow detection
of Landsat images inmountainous areas, this newmethod still has some
limitations. First, the cloud mask produced by MFmask is not always
better than Fmask, mainly because the BT normalization of MFmask
may decrease the temperature probability of the cloud pixels located
in relatively high elevation. This artifact is mostly noticeable for cloud
edge pixels, which are influenced by the neighboring warm surface
pixels. These minor omission errors may not be that important, as a 3-
pixel dilation for cloud mask is recommended in the final applications.
Second, MFmask still has the same limitation as Fmask that other very
bright and cold land features (e.g., high elevation snow/ice) may be
identified as clouds, resulting in incorrect cloud shadows (Selkowitz
and Forster, 2015). AlthoughMFmask can reduce the commission errors
for the high elevation cloud-like pixels (Fig. 11c), it may also induce
more commission errors when those cloud-like pixels are in low eleva-
tion comparedwith the original Fmask (see red arrow in Fig. 17). This is
Fig. 17. Comparison of MFmask and Fmask for a subset Landsat 7 ETM+ image from
Andes Mountains, Santa Cruz, Argentina (p230_r94 and 20011226) where more
commissions of snow/ice as clouds were observed at a relatively low elevation by
MFmask. The upper left image shows the MFmask cloud (yellow) and cloud shadow
(green) mask for the enlargement of the entire Landsat image with a size of 15
× 15 km2. The upper right image shows the corresponding Fmask cloud and cloud
shadow mask. The lower left image shows the false color composited Landsat image
(Bands 5, 4, and 3). The lower right image shows the corresponding DEM data of the
entire Landsat image. The red arrow points to the commission errors of snow/ice as
clouds in the two algorithms as example. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
because that the BT normalization also increased the temperature prob-
ability of the pixels in lower elevations.

The ASTER DEM datawere used as the source for extracting DEMs in
this study for its global coverage at a resolution of 1 arc-second by 1 arc-
second (30 by 30m at equator). However, the ASTERDEMdata contains
missing data (Tachikawa et al., 2011), which will cause problems for
cloud and cloud shadow detection. When many clear-sky land pixels
lacking valid DEM data, the cloud detection accuracies may decrease
as their BT cannot be effectively normalized.Moreover, if cloud shadows
are located at the pixels with lack of DEMs,MFmaskmay fail to improve
the cloud shadowdetection, because the shape and the location of cloud
shadow cannot be accurately obtained. Therefore, other DEM datasets
can be used as the supplement of the ASTER DEM data. For example,
the Shuttle Radar TopographyMission (SRTM) 1 arc-second DEM prod-
uct is recommended for themiddle or lower latitude areas because of its
higher overall accuracy (Hirt et al., 2010). Additionally, the correspond-
ingDEMdata for each Landsat image needs to bemanually downloaded,
mosaicked, projected, and resampled to Landsat's resolution and extent,
so MFmask is inherently more complicated to use compared with
Fmask.

To facilitate the use of the MFmask algorithm, we have released a
Matlab package (available from https://github.com/qsly09/mfmask/).
The time required for this software to process one Landsat image de-
pends on cloud cover and its underlying surface. Generally, the runtime
per image, on a 2.0 GHz development computer with an Intel Xeon E5-
2650 processor and 24 GB of RAM, is between 1 and 15 min.

In conclusion, we proposed a new algorithm (MFmask) that effec-
tively improves the detection of cloud and cloud shadow for Landsats
4–8 images in mountainous areas by incorporating a DEM into the
Fmask algorithm. Compared with Fmask, this new algorithm can pro-
duce better cloud and cloud shadow masks for mountainous areas,
and can also work well for non-mountainous areas.
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