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A new method called Fmask (Function of mask) for cloud and cloud shadow detection in Landsat imagery is
provided. Landsat Top of Atmosphere (TOA) reflectance and Brightness Temperature (BT) are used as inputs.
Fmask first uses rules based on cloud physical properties to separate Potential Cloud Pixels (PCPs) and clear-
sky pixels. Next, a normalized temperature probability, spectral variability probability, and brightness prob-
ability are combined to produce a probability mask for clouds over land and water separately. Then, the PCPs
and the cloud probability mask are used together to derive the potential cloud layer. The darkening effect of
the cloud shadows in the Near Infrared (NIR) Band is used to generate a potential shadow layer by applying
the flood-fill transformation. Subsequently, 3D cloud objects are determined via segmentation of the poten-
tial cloud layer and assumption of a constant temperature lapse rate within each cloud object. The view angle
of the satellite sensor and the illuminating angle are used to predict possible cloud shadow locations and se-
lect the one that has the maximum similarity with the potential cloud shadow mask. If the scene has snow, a
snow mask is also produced. For a globally distributed set of reference data, the average Fmask overall cloud
accuracy is as high as 96.4%. The goal is development of a cloud and cloud shadow detection algorithm suit-
able for routine usage with Landsat images.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

The long history of Landsat data is one of the most valuable data-
sets available for studying land cover change and human influences
on the land surface (Cohen et al., 1998; Coiner, 1980; Coppin &
Bauer, 1994; Seto et al., 2002), especially since the first Thematic
Mapper (TM) sensor was launched in 1982, which provided higher
spatial resolution and more spectral bands. However, many of the
Landsat images are inevitably covered by cloud, especially in the tro-
pics (Asner, 2001). The International Satellite Cloud Climatology Pro-
ject-Flux Data (ISCCP-FD) data set estimates the global annual mean
cloud cover is approximately 66% (Zhang et al., 2004). The presence
of clouds and their shadows complicates the use of data in the optical
domain from earth observation satellites. The brightening effect of
the clouds and the darkening effect of cloud shadows influence
many kinds of data analyses, causing problems for many remote sens-
ing activities, including inaccurate atmospheric correction, biased es-
timation of Normalized Difference Vegetation Index (NDVI) values,
mistakes in land cover classification, and false detection of land
cover change. Therefore, clouds and cloud shadows are significant
sources of noise in the Landsat data, and their detection is an initial
step in most analyses (Arvidson et al., 2001; Irish, 2000; Simpson &
Stitt, 1998). Generally, clouds can be divided into two categories:
rights reserved.
thick opaque clouds and thin semitransparent clouds. The thick opa-
que clouds are relatively easier to identify because of their high re-
flectance in the visible bands. The identification of thin semitransparent
clouds is difficult as their signal includes both clouds and the surface un-
derneath (Gao & Kaufman, 1995; Gao et al., 1998, 2002).

Due to the high spectral variability of clouds, cloud shadows, and
the Earth's surface, automated accurate separation of clouds and
cloud shadows from normally illuminated surface conditions is diffi-
cult. Intuitively, it seems that clouds and cloud shadows are easily
separable from clear-sky measurements, as clouds are generally
white, bright, and cold compared to the Earth's surface, while cloud
shadows are usually dark. Nevertheless, there are clouds that are
not white, bright, or cold and cloud shadows even brighter than the
average surface reflectance. Part of the difficulty arises from the
wide range of reflectances and temperatures observed on the surface
(Irish, 2000). One common approach is to screen clouds and cloud
shadows manually. However, this approach is time consuming and
will limit efforts to mine the Landsat archive to study the history of
the Earth's surface.

Over the years, a number of methods were developed for cloud
identification. However, most of them are designed for moderate
spatial resolution sensors such as Advanced Very High Resolution
Radiometer (AVHRR) and Moderate Resolution Imaging Spectrora-
diometer (MODIS). These sensors are usually equipped with more
than one thermal band, or with water vapor/CO2 absorption
bands, both of which are useful for thin semitransparent cloud de-
tection (Ackerman et al., 1998; Derrien et al., 1993; Saunders &
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Table 1
Landsat TM/ETM+spectral bands.

TM bands (μm) ETM+bands (μm)

Band 1 (0.45–0.52) Band 1 (0.45–0.515)
Band 2 (0.52–0.60) Band 2 (0.525–0.605)
Band 3 (0.63–0.69) Band 3 (0.63–0.69)
Band 4 (0.76–0.90) Band 4 (0.75–0.90)
Band 5 (1.55–1.75) Band 5 (1.55–1.75)
Band 6 (10.40–12.50) Band 6 (10.40–12.50)
Band 7 (2.08–2.35) Band 7 (2.09–2.35)
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Kriebel, 1998). For high spatial resolution sensors like Landsat, with
only one thermal band and 6 optical bands placed in atmospheric
windows, accurate cloud identification is difficult. And, cloud shad-
ow identification is even more difficult. Clouds cast shadows on any
type of land cover. When cloud shadows fall on urban, snow, ice, or
bright rocks, they can be very bright compared to the average sur-
face reflectance. Moreover, when the cloud is semitransparent, the
darkening effect of the cloud shadow can be subtle, making the
cloud shadow hard to detect. Therefore, how to detect clouds,
cloud shadows, and especially thin clouds and their shadows in
Landsat images is still an important issue in the remote sensing
community, particularly as we try to use increasingly automated
methods to analyze large volumes of data.

2. Background

Historically, screening of clouds in Landsat data has been per-
formed by the Automated Cloud Cover Assessment (ACCA) system
(Irish, 2000; Irish et al., 2006). By applying a number of spectral fil-
ters, and depending heavily on the thermal infrared band, ACCA gen-
erally works well for estimating the overall percentage of clouds in
each Landsat scene, which was its original purpose. However, it
does not provide sufficiently precise locations and boundaries of
clouds and their shadows to be useful for automated analyses of
time series of Landsat images. Additionally, ACCA fails to identify
warm cirrus clouds and falsely identifies snow/ice in high latitude
areas as clouds (Irish, 2000; Irish et al., 2006). Wang et al. (1999) pro-
posed the use of two multi-temporal Landsat TM images to find
clouds and their shadows by image differencing. This method can
successfully provide an accurate cloud and cloud shadow mask, but
it is highly dependent on the input images. Since the Landsat sensors
are not always turned on, it can be months between successive acqui-
sitions. Also, it is possible that the next Landsat observation is still
cloudy in the same location as the previous Landsat image, which
would further limit the utility of the proposed algorithm. As cloud
and snow/ice are very hard to distinguish from each other in high lat-
itude areas, Choi and Bindschadler (2004) suggested a method for
detecting clouds over ice sheets by using a shadow matching tech-
nique and an automatic Normalized Difference Snow Index (NDSI)
threshold. This method matches the possible cloud and cloud shadow
edges iteratively to find the optimal NDSI threshold for cloud detec-
tion. It works well over ice sheets but it is time consuming and only
works for the surface of ice sheets. The Landsat Ecosystem Distur-
bance Adaptive Processing System (LEDAPS) atmosphere correction
tool also generates an internal cloud mask (Vermote & Saleous,
2007). It uses two passes. There are four tests in the first pass and a
thermal test in the second pass which is similar to ACCA, except
that the second pass generates a cloud mask while the second pass
of ACCA only provides the percentage of cloud cover. This algorithm
needs other ancillary data like the surface temperature provided
from National Centers for Environmental Prediction (NCEP) to help
generate a coarse resolution surface temperature reference layer for
cloud detection. This algorithm has already been used extensively
for atmospheric correction of Landsat images and has shown a better
method for cloud detection in low and middle latitudes compared to
ACCA. However, it may not work well when the clouds cover a large
percentage of the image (large amount of leakage were observed)
or in sun glint and turbid water conditions (Vermote, 2010).
Hégarat-Mascle and André (2009) developed an approach that uses
only two bands, Green and Short Wave Infrared (SWIR), to generate
a “clear-sky line” and use the distance from the tested points to this
line to detect cloud pixels. This method was originally used by
Zhang et al. (2002) to correct for haze in Landsat imagery. It has
been shown to be accurate for retrieving clouds over vegetated
areas, but it fails when the surface reflectance is bright, as is the
case for rocks, snow, ice, sand, etc. (Zhang et al., 2002). By
implementing a cloud-mask algorithm originally developed for the
MODIS Land bands on Landsat data, Oreopoulos et al. (2011) pro-
posed an algorithm that performs on par with the ACCA algorithm
without using the thermal band.

Detecting cloud shadow is more difficult than detecting cloud.
Previously, cloud shadow identification was based on spectral tests.
Though it works sometimes, most of the time it will inevitably include
other dark surfaces that have similar spectral signatures (like topo-
graphic shadows or wetlands) and exclude cloud shadows that are
not dark enough (Ackerman et al., 1998; Hutchison et al., 2009). Re-
cently, geometry-based cloud shadow detection has been shown to
be feasible and more accurate. Currently, there are three kinds of
geometry-based cloud shadow detection methods in the literature:
object matching, lapse rate, and scattering differencing. The object
matching algorithm detects cloud shadow by matching cloud
shadows with cloud objects (Berendes et al., 1992; Hégarat-Mascle
& André, 2009; Simpson & Stitt, 1998; Simpson et al., 2000). The
lapse rate method used a constant lapse rate to estimate cloud top
height by brightness temperature and use the cloud pixels to cast
shadows (Vermote & Saleous, 2007). This latter method works well
for thick clouds but is not accurate when the clouds are semitranspar-
ent, as the brightness temperature will be a mixture of thin cloud and
the surface, making cloud height estimation problematic. As cloud
shadow scattering is stronger in the short wavelengths (especially
Blue band), Luo et al. (2008) proposed to use this physical character-
istic (scattering differences between the short wavelength and NIR or
SWIR), combined with the geometry, to produce cloud shadow
masks. This new method works well over vegetated area, but is less
accurate when the cloud shadow falls on bright surfaces or the
cloud shadow comes from a very thin cloud.

In this paper, we provide a new algorithm for detecting both
clouds and cloud shadows for Landsat TM and Enhanced Thematic
Mapper Plus (ETM+) images that builds on the results of previous
approaches. The cloud mask is computed from a probability mask
and a scene-based threshold. Cloud shadows are calculated using a
combination of previous methods (object matching and lapse rates)
and a flood-fill transformation. This algorithm works well in high lat-
itudes, separating clouds from shallow or turbid water accurately, and
can also detect thin clouds and their shadows. If a Landsat scene has
snow, Fmask also produces a snow mask.
3. The Fmask algorithm

The input data are Top of Atmosphere (TOA) reflectances for
Bands 1, 2, 3, 4, 5, 7 and Band 6 Brightness Temperature (BT)
(Table 1). For Landsat L1T images, Digital Number (DN) values are
converted to TOA reflectances and BT (Celsius degree) with the
LEDAPS atmosphere correction tool (Masek et al., 2006; Vermote &
Saleous, 2007). Then, rules based on cloud and cloud shadow physical
properties are used to extract a potential cloud layer and a potential
cloud shadow layer. Finally, the segmented potential cloud layer
and the geometric relationships are used to match the potential
cloud shadow layer, leading to the production of the final cloud and
cloud shadow mask. If the Landsat scene has snow, Fmask will also
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Fig. 1. An example of choosing an optimal threshold for “Whiteness” based on sensitiv-
ity analysis. Note that a threshold of 0.7 shows the highest average Fmask cloud overall
accuracy.
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produce a snow mask in addition to the cloud and cloud shadow
mask.

3.1. Layers of potential clouds, cloud shadows, and snow

3.1.1. Potential cloud layer — pass one
The Fmask algorithm first combines several spectral tests to iden-

tify the Potential Cloud Pixels (PCPs) — the pixels that may possibly
be cloudy and may sometimes be clear pixels. Otherwise, the pixels
are considered to be absolutely clear-sky pixels. This first pass in-
cludes a number of spectral tests as follows:

Basic Test ¼ Band 7 > 0:03 and BT b 27 and
NDSI < 0:8 and NDVI < 0:8

ð1Þ

Where,

NDSI= (Band 2−Band 5)/(Band 2+Band 5)
NDVI= (Band 4−Band 3)/(Band 4+Band 3).

This “Basic Test” is one of the most fundamental tests for cloud
identification. Due to the bright and cold nature of clouds, all kinds
of clouds should have Band 7 TOA reflectance larger than 0.03 (heri-
tage from LEDAPS internal cloud masking algorithm) and BT less
than 27 °C (heritage from ACCA). The NDSI and NDVI values of clouds
are usually around zero because of their “white” character in optical
spectral bands. For certain cloud types, such as very thin clouds over
highly vegetated area or icy clouds, the NDVI and NDSI values can be
larger, but both of them cannot be higher than 0.8. ACCA also uses
NDSI threshold of 0.8 to separate clouds from snow pixels in the first
pass. Therefore, Fmask uses NDSI and NDVI thresholds of 0.8 to sepa-
rate PCPs from some of the vegetated or snow covered areas.

MeanVis ¼ Band 1þ Band 2þ Band 3ð Þ=3

Whiteness Test ¼
X3

i¼1
j Band i−Mean Visð Þ=Mean Visjb 0:7: ð2Þ

This “Whiteness” index was originally proposed by Gomez-Chova
et al. (2007). As clouds always appear white due to their “flat” reflec-
tance in the visible bands, they used the sum of the absolute difference
between the visible bands and the overall brightness to capture this
cloud property. This index works well in ENVIronmental SATellite
(ENVISAT) Medium Resolution Imaging Spectrometer (MERIS) multi-
spectral image as it has many narrow visible bands. However, it is not
that useful for Landsat sensor which only has three visible bands. By
dividing the difference by the average value of the visible bands, the
new “Whiteness” index works well for Landsat imagery and 0.7 (sen-
sitivity analysis of the global cloud reference dataset) appears to be an
optimal threshold for excluding clear-sky pixels that exhibit high var-
iability in the visible bands. All the sensitivity analyses in this paper
are based on a set of 142 Landsat reference images (see Section 4.2
for details). To find the optimal threshold for “Whiteness”, we let the
“Whiteness” threshold vary from 0.5 to 0.9 (at 0.1 intervals) and
chose the one with the highest average cloud overall accuracy
(Fig. 1). The above “Whiteness” index is used to exclude pixels that
are not “white” enough to be clouds. Note that this “Whiteness Test”
may also include some pixels of bare soil, sand, and snow/ice as they
may also have “flat” reflectance in the visible bands.

HOT Test ¼ Band1–0:5•Band 3–0:08 > 0: ð3Þ

This Haze Optimized Transformation (HOT) for Landsat data was
firstly proposed by Zhang et al. (2002). It is based on the idea that
the visible bands for most land surfaces under clear-sky conditions
are highly correlated, but the spectral response to haze and thin
cloud is different between the blue and red wavelengths. The “HOT”
in Zhang et al. (2002) is built empirically from regression of DN values
from clear-sky pixels. If we use TOA reflectance as inputs for regression,
Eq. (3) is retrieved for most of the Landsat images. The results are espe-
cially helpful for separating haze and thin cloud from clear-sky pixels.
Similar test has also been used in the LEDAPS internal cloudmasking al-
gorithm. All kinds of clouds (thin and thick) and possibly thick aerosols
will be identified by this test. Note that this “HOT Test”may also include
some bright pixels like rocks, turbid water, or snow/ice surface due to
their large TOA reflectance in the visible bands.

B4=B5 Test ¼ Band 4=Band 5 > 0:75: ð4Þ

This spectral test is similar to a test in ACCA (Irish, 2000) in which
a Band 4 and Band 5 ratio larger than 1 is used to exclude bright rock
and desert due to the fact that they tend to exhibit higher reflectance
in Band 5 than in Band 4, whereas the reverse is true for clouds. How-
ever, this threshold may also exclude some thin clouds. Therefore, we
reduced this threshold to 0.75 (sensitivity analysis of the global cloud
reference dataset) in Fmask to include all possible cloud pixels. This
test may also include other noncloud pixels, but the main focus of
this test is separating most of bright rocks from clouds.

Water Test ¼ NDVI b 0:01 and Band 4 b 0:11ð Þor
NDVI b 0:1 and Band 4 b0:05ð Þ:

ð5Þ

This “Water Test” divides all pixels into two categories — water
and land pixels. The thick clouds will be identified as land pixels
whether they are over land or water (thick clouds block all informa-
tion for land and water separation), while the thin clouds over
water may still be able to be identified as water pixels. NIR band re-
flectance is a good indicator for water identification, as water is gen-
erally dark in this band while land is usually bright. Additionally,
NDVI values are especially useful for separating water pixels from
land pixels, as land NDVI values are generally above 0.10 and water
NDVI values are usually less than 0.10 (Vermote & Saleous, 2007).
Most of the water pixels are identified by NDVI less than 0.1 and
Band 4 less than 0.05. Some of the water pixels may have relatively
large Band 4 reflectance because of influence of thin clouds or turbid
conditions, and they will be captured by using NDVI less than 0.01
and Band 4 less than 0.11. The “Water Test” is mainly used for sepa-
rating cloud probability calculation over water and land in pass two.
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By applying the spectral tests above, Fmask will identify PCP as
follows:

PCP ¼ Basic Test trueð Þ and Whiteness Test trueð Þ and

HOT Test trueð Þ and B4=B5 Test trueð Þ: ð6Þ

If the PCPs aremore than 99.9% of the scene, theywill be used for the
final cloud mask directly, as there are not enough clear-sky pixels (ap-
proximately 50,000 pixels) for statistic analyses in the second pass. If
the PCPs are less than 99.9% of the scene, the PCPs and the absolute
clear-sky pixels will be sent to the second pass. As the algorithm tends
to include all possible cloudy pixels (it overestimates cloud fraction) in
the first pass, Fmask requires a relatively small percentage (0.1%) of the
scene to be absolutely clear to allow the second pass to work.

3.1.2. Potential cloud layer — pass two
After identification of all PCPs, the rest of the pixels (absolute clear-

sky pixels) can be used for computing cloud probability for all pixels in
the image. As the temperature distributions and the range of reflectances
for land and water can be quite variable in space and time, Fmask com-
putes cloud probability separately for water and land. The water and
land pixels are classified by the “Water Test” applied in pass one.

The cloud probability for water (wCloud_Prob) is a combination of
temperature probability (wTemperature_Prob) and brightness proba-
bility (Brightness_Prob) computed as follows:

Temperature probability for water:

Clear�sky Water ¼ Water Test trueð Þ and Band 7 b0:03: ð7Þ

Twater ¼ 82:5 percentile of Clear�sky Water pixels0BT: ð8Þ

wTemperaturePProb ¼ Twater–BTð Þ=4: ð9Þ

The difference between the estimated clear-sky water temperature
(Twater) and the pixels' BT are normalized by 4 °C to compute the tem-
perature probability for water (Eq. 9). The clear-sky water pixels are
identified with a “Water Test” and a low Band 7 reflectance threshold
(Eq. 7). Twater is estimated with the upper level (82.5 percentile) of
clear-sky water temperature, in purpose of exclude other atmospheric
influences that are usually making water temperature colder. A con-
stant of 4 °C is used for re-scale the temperature probability because
a pixel would have a high probability of being a cloud pixel if its BT is
4 °C colder than the surface temperature (Vermote & Saleous, 2007).
As temperature is one of the most important dimensions in cloud de-
tection, the temperature probability can be higher than one if the BT
of the pixel is more than 4 °C colder than the estimated clear-sky
water temperature.
Brightness probability:

Water is generally dark, especially in Band5 reflectance. The existence
of clouds over water can increase Band 5 reflectance greatly. Fmask uses
the normalized Band 5 reflectance to calculate the brightness probability
for cloud detection over water. Usually Band 5 reflectance of water is less
than 0.05, except for some turbid or shallow water pixels which may
have higher reflectance. The brightest watermay have Band 5 reflectance
as high as 0.11. Fmask calculates the normalized brightness probability
with Eq. (10).

BrightnessPProb ¼ min Band5; 0:11ð Þ=0:11: ð10Þ

Cloud probability for water:
The cloud probability for water pixels is computed by combining

both the temperature probability and the brightness probability
(Eq. 11). The temperature probability may contribute more than the
brightness probability for some very cold pixels because of its wider
probability range.

wCloudPProb ¼ wTemperaturePProb•BrightnessPProb: ð11Þ

As BT and Band 5 reflectance for clear-sky water pixels are very ho-
mogenous, Fmask uses a fixed threshold to retrieve clouds over
water. Awater pixel is identified as a cloud pixel ifwCloud_Prob is larg-
er than 0.5. This fixed threshold works well for detecting clouds over
water. By combining temperature and brightness probabilities, bright
water pixels (like shallow or turbid water pixels) or cold water pixels
(higher elevation water) will be easily excluded from cloud pixels be-
cause if one of the probabilities is close to zero, no matter how large
the other probability is, the cloud probability for water will still be
close to zero.

The cloud probability for land (lCloud_Prob) is a combination of
temperature probability (lTemperature_Prob) and variability proba-
bility (Variability_Prob) computed as follows:

Temperature probability for land:

Clear�sky Land ¼ PCP falseð Þ and Water Test falseð Þ: ð12Þ

Tlow; Thigh

� �
¼ 17:5; 82:5ð Þ percentile of Clear�sky Land pixels0 BT: ð13Þ

If clear-sky land pixels cover less than 0.1% (minimum necessary
pixels for statistic analysis) of the total observations in the scene,
Fmask will use the clear-sky pixels (from both land and water) for cal-
culating temperature probability instead of only using the clear-sky
land pixels. Tlow and Thigh calculated from Eq. (13) provide the tempera-
ture interval for clear-sky land pixels. The 17.5% and 82.5% thresholds
were derived from a sensitivity analysis of the global cloud reference
masks. As land temperatures can differ greatly, Fmask uses the upper
and lower level of the clear-sky land temperature to normalize the tem-
perature probability for land (Eq. 14). Normally, if the pixel's BT is 4 °C
colder than Tlow, the pixel has a high probability of being a cloud. On
the other hand, if the pixel's BT is 4° warmer than Thigh, the pixel is
most likely clear. Because temperature is one of the most important di-
mensions in cloud detection, the temperature probability for land can
be larger than one if the BT of the pixel is more than 4 °C colder than
Tlow.

lTemperaturePProb ¼ Thigh þ 4–BT
� �

= Thigh þ 4– Tlow–4ð Þ
� �

: ð14Þ

Variability probability:
Due to the large variability of reflectance for land pixels, the

brightness probability does not work well over land for cloud detec-
tion. However, as the cloud spectral reflectances in the optical
bands are very consistent, Fmask uses the probability of the spectral
variability to identify clouds over land. The NDVI, NDSI, and “White-
ness” values are used to capture the spectral variability in NIR/Visible,
SWIR/Visible, and within the Visible. Fmask uses 1 minus the largest
value among the three indices to represent the spectral variability.
The NDVI and NDSI based spectral variability may not be accurate
when dealing with saturated pixels. In this case, a modified NDVI
and NDSI are used in Eq. (15). The NDSI and NDVI values are modified
as follows: if a pixel is saturated in Band 2 and has Band 5 larger than
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Band 2, Fmask gives a zero value for this pixel's NDSI; the same rule is
applied for the modified NDVI, that is, if a pixel is saturated in Band 3
and has Band 4 larger than Band 3, Fmask gives a zero value for this
pixel's NDVI. This is because compared to NIR and SWIR bands, the
Landsat visible bands are easily saturated for bright pixels. Theoreti-
cally, for bright cloud pixels, all the optical bands TOA reflectance
will be close to 1, making the NDSI and NDVI values close to 0. How-
ever, if visible bands become saturated at a small value, for example
0.5 (Dozier, 1989), while NIR and SWIR bands do not (close to 1), it
would make the absolute values of NDSI and NDVI much larger than
0, making probability of spectral variability lower for cloud pixels.

VariabilityPProb ¼ 1–maxðabs modified NDVIð Þ;
abs modified NDSIð Þ; and WhitenessÞ:

ð15Þ

Cloud probability for land:
The cloud probability for land pixels is computed by combining

both temperature probability and variability probability as follows.
The temperature probability may contribute more than the variability
probability for some very cold pixels because of its wider probability
range.

lCloudPProb ¼ lTemperaturePProb•VariabilityPProb: ð16Þ

The threshold for defining cloud over land is consisted by the
upper level (82.5 percentile) of clear-sky land pixels' probability plus
a constant of 0.2 (based on sensitivity analysis) shown in Eq. (17).
Fmask identifies a pixel as cloud if the land pixel's lCloud_Prob is larger
than this scene-based threshold.

LandPthreshold
¼ 82:5 percentile of lCloudPProb Clear�sky Land pixelsð Þþ0:2:

ð17Þ

Therefore, by combining the cloud probability and the previously
identified PCPs, Fmask generates the potential cloud layer in
Eq. (18). Due to the possibility of omitting clouds in PCPs, Fmask
finds missed cloud pixels if the lCloud_Prob is extremely large
(more than 99%) over land or BT is extremely cold (35 °C colder
than Tlow).

Potential Cloud Layer is true if

PCP trueð Þ and Water Test trueð Þ and wCloudPProb > 0:5ð Þ or
PCP trueð Þ and Water Test falseð Þ and lCloudPProb>LandPthresholdð Þ or
lCloudPProb > 0:99 and Water Test falseð Þð Þ or BTbTlow–35ð Þ: ð18Þ

Finally, Fmask will spatially improve the cloud mask by using the
rule that sets a pixel to cloud if five or more pixels in its 3-by-3 neigh-
borhood are cloud pixels; otherwise, the pixel stays clear.

3.1.3. Potential cloud shadow layer
Because beam solar radiation is blocked by clouds, the cloud

shadows are mainly illuminated by scattered light. As the atmospher-
ic scattering is stronger at shorter wavelengths (for example visible
bands), the diffusive radiation in the shadows will be relatively smal-
ler at longer wavelengths (for example NIR and SWIR bands), making
the shadowed pixels darker than their surroundings (Luo et al.,
2008). Moreover, as NIR reflectance is usually high (including vegeta-
tion, snow, ice, and rock), the darkening effect of cloud shadows is
most obvious in this Band. Therefore, a morphological transformation
called flood-fill is performed for Band 4 reflectance (NIR band) which
brings the intensity values of dark areas that are surrounded by ligh-
ter areas up to the same intensity level as the surrounding pixels
(Soille, 1999). In field of morphology, the gray-scaled image is viewed
as a “digital elevation model”. Therefore, all cloud shadows are locat-
ed at places with regional minima due to their relatively darker Band
4 reflectance compared to their surroundings. The flood-fill transfor-
mation is defined as the reconstruction by erosion of the input digital
elevation model using a marker image which is set to the maximum
height of the digital elevation model except along its borders and at
the bottom of natural depressions where it inherits the values of the
input digital elevation model (Soille et al., 2003). In this case, the dif-
ference between the filled Band 4 reflectance and the original Band 4
reflectance will include the darkening effect of the cloud shadows.
If the cloud shadow is located at the edge of the scene, the flood-fill
transformation will not be able to identify it. Therefore, Fmask
fills the edge of the scene with the lower level (17.5 percentile) of
the clear-sky land Band 4 reflectance to catch all potential cloud
shadows.

Potential Cloud Shadow Layer is true if
Flood−fill Band 4 – Original Band 4 > 0:02:

ð19Þ

3.1.4. Potential snow layer

Potential Snow Layer is true if

NDSI > 0:15 and BT b 3:8 and B and4 > 0:11and B and 2 > 0:1:

ð20Þ

Most of the spectral tests used here (BT less than 3.8, Band 4 more
than 0.11, and Band 2 more than 0.1) are from the MODIS snow map-
ping algorithm (Hall et al., 2001). The only difference is the NDSI
thresholds used. The MODIS snow algorithm uses NDSI larger than
0.4 as its threshold to identify pixels that are approximately 50% or
greater covered by snow. We lower the NDSI threshold to 0.15 for
Fmask to include pixels with snow coverage less than 50% and snow
contaminated forest areas in which snow are partly blocked by the
forests. At the same time, for all clear (snow and cloud free) land
pixels in Landsat data, the NDSI values are always lower than 0.15.
Therefore, with a NDSI threshold of 0.15, we can separate snow free
and snow contaminated pixels accurately in Landsat data. This
threshold has already been used for operational snow mapping in
Meteosat Spinning Enhanced Visible Infra-Red Imager (SEVIRI) imag-
ery (Wildt et al., 2007).

3.2. Object-based cloud and cloud shadow match

The basic idea of this cloud and cloud shadow matching approach
is that by knowing the view angle of the satellite sensor, the solar ze-
nith angle, the solar azimuth angle, and the relative height of the
cloud, we can predict the cloud shadow location based on the geo-
metric relationship between a cloud and its shadow. Because the
first three factors are known, we can use them to calculate the pro-
jected direction of the cloud shadow. Along this direction, Fmask
matches the cloud object with the potential shadow layer by using
the idea that a cloud and its shadow have similar shape (Fig. 2). The
original cloud object is excluded from the calculated shadow, as the
pixels cannot be cloud and shadow at the same time. The match sim-
ilarity for each cloud object is the ratio of the overlap area between
the calculated shadow and the potential cloud or shadow layers to
the calculated shadow area. To match the correct cloud shadow, iter-
ation of the cloud height continues if similarity is increasing or not
decreasing to 98% of the maximum similarity; otherwise, the iteration
will stop. If similarity is larger than a given threshold, the cloud shad-
ow is matched, otherwise, it is rejected. The similarity threshold can
be any value from 0.2 to 0.5, which all provide similar cloud shadow
results. A threshold of 0.3 is applied for Fmask as it keeps a balance
between omission and commission errors of cloud shadows.



Potential cloud layer

Potential shadow layer

Calculated cloud shadow object

Moving direction

Cloud object

Fig. 2. Illustration of clouds and shadows matching based on similarity.
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The cloud objects are derived by segmentation of the potential
cloud layer, that is, the potential cloud pixels adjacent to other poten-
tial cloud pixels (using 8-way connectedness) are identified as one
cloud object. The shapes of cloud objects are not always the same as
their cloud shadows (Fig. 2 is an ideal case assuming cloud objects
are flat and no other regional minima pixels are identified as potential
cloud shadow), because some kinds of clouds having large vertical ex-
tents may cast cloud shadow that extend further than the flat cloud
approximation allows. This can also occur with small vertical extent
clouds at very low solar elevations angles. Therefore, Fmask treats
each cloud as a 3D object with a base height retrieved by matching
clouds and cloud shadows, and a top height estimated by a constant
lapse rate and its corresponding base height.

As cloud base height can be any value from 200 m to 12,000 m, it
would be time consuming and may cause false matches if we iterate
cloud height across this entire range for each cloud object to find its
cloud shadow. Fmask algorithm narrows the cloud base height
range by using cloud object BT. For standard atmosphere conditions,
the adiabatic lapse rate for dry air is −9.8 K km−1 and for wet air is
−6.5 K km−1 (Hartmann, 1994). However, this is not always true
for thin clouds, as their BT is influenced by the warmer ground surface
underneath. In this case, Fmask uses a reduced wet adiabatic lapse
rate of −1 K km−1 to capture thin cloud shadows. Therefore, we
can predict the minimum and maximum cloud object base height
range as:

HcloudPbase ¼ max 0:2; Tlow–4–TcloudPbase

� �
=9:8

� �
;min 12; Thigh þ 4–TcloudPbase

� �� �� �
km:

ð21Þ

For each cloud object, Tcloud_base should have the highest BT due to
the fact that the cloud base pixels are the lowest cloud pixels that the
sensor can detect. Nevertheless, for both thick and thin clouds, the
warmest cloud pixels located at the edge do not represent the actual
BT of the cloud base due to influences from the neighboring warm
ground. Therefore, it is necessary to use pixels far enough from the
edge of the cloud to represent the cloud base BT and adjust the
edge pixels that are warmer than this value. For the purpose of sim-
plify cloud base BT calculation, Fmask assumes each cloud object is
round and 8 cloud edge pixels are influenced by the neighboring
warm surface. If the calculated radius of cloud object is less than
8 pixels, Fmask uses the minimum BT of the cloud object as its
cloud base BT. Therefore, we can calculate the cloud base BT
(Eq. 22) and adjust the influenced cloud BT with this value (Eq. 23)
as follows:

If R≥ ¼ 8 TcloudPbase ¼ 100 R−8ð Þ2=R2percentile of cloud object BT

Else TcloudPbase ¼ min cloud object BTð Þ ð22Þ

Where,

R ¼ sqrt total pixels of a cloud object=2πð Þ:

If TcloudPobject > TcloudPbase

TcloudPobject ¼ TcloudPbase: ð23Þ

Since within the cloud object the air is wet, Fmask assumes the
lapse rate in the cloud is a constant of −6.5 K km−1. Therefore, the
cloud top height can be estimated based on the cloud base height
and relative BT difference between cloud base and cloud top:

HcloudPtop ¼ HcloudPbase þ 6:5 TcloudPbase−TcloudPtop

� �
km: ð24Þ

Finally, as the matched cloud shadow may have holes, Fmask
buffers by 3 pixels in 8-connected directions for each of the matched
cloud shadow pixel to fill those small holes. Moreover, as the poten-
tial cloud shadow layer produced previously includes all shadow
areas, Fmask further refines the cloud shadow mask by only choosing
the overlap between the potential cloud shadow layer and the
matched cloud shadow objects. For cloud objects less than 3 pixels,
Fmask excludes them from cloud mask and does not match cloud
shadows for them as most of them are misidentification of small
bright cold noncloud pixels.

The details of the cloud and cloud shadow matching algorithm
are shown in Fig. 3. Because snow pixels, cloud pixels, and cloud
shadow pixels may overlap, Fmask sets cloud pixels to have the
highest priority, cloud shadow pixels have the second highest prio-
rity, and snow pixels have the lowest priority. In this case, if the
three classes overlap for a pixel, the class with the highest priority
will be its label.

4. Fmask results and accuracy assessment

4.1. Fmask results

By comparing the results of Fmask with false color composites vi-
sually (Fig. 4a, b, c, d), it appears to work well in identifying cloud
(yellow), cloud shadow (green), and snow/ice (cyan). Fig. 4a is one
of the Sub-tropical South images with well-behaved clouds and
cloud shadows over highly vegetated areas. Fmask showed its strong
ability in identifying this kind of clouds (including some of the thin
clouds) and their shadows. On the other hand, Fig. 4b is a Sub-
tropical North image with large variability in surface reflectances.
Fmask works well in terms of identifying clouds in areas of very
bright rock and has no problem in labeling cloud shadows over this
bright surface. Furthermore, Fig. 4c is one of the South Polar images
with thick and thin clouds over very bright snow/ice. The snow/ice
is accurately identified in cyan color, and the clouds (both thick and
thin) are separated well from the bright snow/ice. Finally, Fig. 4d is
a very difficult image, as it has extremely thin cirrus clouds (see red
arrows) and bright turbid water (see yellow arrows). In the Fmask re-
sult, there is no commission errors of clouds from the bright turbid
water and the extremely thin cirrus clouds are also identified with
high accuracy. This sort of qualitative evaluation was an important
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Fig. 3. Flow chart of object-based cloud and cloud shadow match algorithm.
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part of the development of the algorithm. To more rigorously assess
its accuracy, reference data are used.
4.2. Accuracy assessment of Fmask

The ACCA reference scenes are the only sample available at pre-
sent designed to systematically cover the full range of global environ-
ments and cloud conditions (Irish et al., 2006). There are manual
cloud masks for all reference scenes and a few of them have manual
cloud shadow masks. A total of 188 random Landsat Worldwide Ref-
erence System (WRS) locations in nine latitudinal zones were chosen
(Fig. 5).

There are 212 reference scenes evenly distributed among nine lat-
itude zones. The manual mask was derived by visual assessment of
full resolution scene in Adobe Photoshop using different combina-
tions of bands (overlay the resampled thermal band if necessary) by
three U. S. Geological Survey (USGS) image analysts. To obtain the ap-
proximate error of the manual masks, 11 scenes were examined by all
three analysts, and the average difference was around 7% (Oreopoulos
et al., 2011). Due to the difficulty in identifying cloud and cloud shad-
ow, not all the reference masks are accurate enough for accuracy
assessment of cloud mask at the pixel level. After carefully looking
through the reference archive (by experts from Boston University
and USGS), a total of 70 reference scenes were excluded, due to either
low accuracy of the cloud manual mask or artifacts in the Landsat ref-
erence images. The remaining 142 reference scenes were used for ac-
curacy assessment of Fmask results. The cloud shadow reference
masks are not as accurate as the cloud reference masks as these refer-
ence scenes were originally interpreted to test estimates of percent
cloud cover. In total, there are 26 scenes for accuracy assessment of
cloud shadows. Five different accuracies were used to assess the accu-
racy of the algorithm results. Considering cloud and noncloud (includ-
ing cloud shadow) as two classes, we have the following three
accuracies for cloud accuracy assessment (Eqs. 25–27):

Cloud overall accuracy

¼ agreement between manual mask and algorithm mask
total pixels

: ð25Þ

Cloud producers accuracy

¼ agreement of cloud
agreement of cloudþ omission of cloud

: ð26Þ

Cloud users accuracy ¼ agreement of cloud
agreement of cloudþ omission of cloud

: ð27Þ

On the other hand, considering shadow and nonshadow (include
cloud) as two classes, we have the following two accuracies for
cloud shadow accuracy assessment (Eqs. 28–29):

Cloud shadow producers accuracy

¼ agreement of cloud shadow
agreement of cloud shadowþ omission of cloud shadow

: ð28Þ

Cloud shadow users accuracy

¼ agreement of cloud shadow
agreement of cloud shadowþ comission of cloud shadow

: ð29Þ

The cloud shadow overall accuracy is not used for accuracy assess-
ment, because cloud shadows are usually much smaller in size com-
pared to clouds, and this would make the cloud shadow overall
accuracy always high even if cloud shadows identification is totally
wrong. We suggest that producers accuracy is more important than
users accuracy, because errors of omission of clouds or cloud shadows
are more serious than errors of commission. If clouds or cloud
shadows are missed they will greatly undermine future analyses
like change detection or image classification. However if clear areas
are masked as clouds or cloud shadows, the only consequence is a lit-
tle lost data.

In addition to the per-pixel accuracies described above, Fmask re-
sults are compared with ACCA in terms of percent cloud cover. ACCA
mainly consists of two passes in which the second pass of ACCA is
only used to improve the scene-wide cloud cover percent and the
first pass is the only phase that creates a per-pixel cloud mask
(Scaramuzza, 2010). Therefore, we compared the Fmask cloud cover
percent with results of the second pass of ACCA, and Fmask cloud ac-
curacies at the pixel level with results from the first pass of ACCA.

Estimates of percent cloud cover from Fmask are very accurate
(Fig. 6), with an R-square of more than 0.99. The slope of the regres-
sion line is 1.00, with a very small interception (0.83%), and relatively
small Root Mean Square Error (RMSE) (3.25%). On the other hand,
ACCA estimates of percent cloud cover are also accurate, with an R-
square of 0.95 and the slope of the regression line is 0.95 with an in-
terception of 0.39% and an RMSE of 6.56%. For the purpose of estimat-
ing percent cloud cover for a scene, Fmask appears to be an improvement
over ACCA as except for the magnitude of interception, it has a higher R-
square value, lower RMSE, and less bias in the slope of regression line.



a b 

c d 

Fig. 4. Fmask results of four Landsat scenes. (a). Results of a Sub-tropical South Landsat scene (p31_r43 and 20010615). (b). Results of a Sub-tropical North Landsat scene (p189_r47
and 20010805). (c). Results of a Polar South Landsat scene (p217_r107 and 20011215). (d). Results of a Tropical Landsat scene (p190_r54 and 20010929). In each Landsat scene,
(lower left) shows an entire false color composited Landsat image (Fig. 4a, b, and d are shown with Bands 4, 3, and 2 composited; Fig. 4c is shown with Bands 5, 4, and 4 composit-
ed). (Lower right) shows the corresponding Fmask cloud (yellow) and cloud shadow (green) mask for the whole scene. Black pixels are clear. (Upper left) and (upper right) images
are enlargements of (lower left) and (lower right) images with a size of 60×60 km2.
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At the pixel scale, the average Fmask cloud overall accuracy is
96.41% with a small standard deviation of 3.2% (Fig. 7). It is a signifi-
cant increase compared with ACCA whose average overall cloud accu-
racy is 84.8% with a standard deviation of 11.9%. Cloud producers and
users accuracies for images with cloud cover less than 5% were not
analyzed here, as producers and users accuracies computed for clouds
with very small size may be biased greatly because of the definition of
cloud boundaries. The average Fmask cloud producers accuracy is
92.1% (Fig. 8) with a standard deviation of 13.3% which is a significant
improvement compared with ACCA whose average cloud producers
accuracy is 72.1% with a standard deviation of 26.5%. Moreover, the
average Fmask cloud users accuracy is 89.4% (Fig. 9) with a standard
deviation of 9.8% which is similar as ACCA whose average cloud users
accuracy is 91.8% with a standard deviation of 12.3%. Considering that
producers accuracy is more important (in our opinion) than users ac-
curacy, the improvement of cloud identification in Fmask is signifi-
cant compared with ACCA.

On the other hand, Fmask seems to overestimate cloud shadows,
which is mainly caused by the 3 pixels buffered (in 8-connected
neighborhood) for each cloud shadow pixel (Fig. 10). The average
producers accuracy for cloud shadow is larger than 70%, and its aver-
age users accuracy is around 50% (images with cloud shadows



Fig. 5. Locations of the Landsat scenes used in the reference dataset (Plate 7. in Irish et al., 2006).
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covering less than 1% of the image are not analyzed here). The lower
accuracies are partly the result of errors in the manual cloud shadow
masks and the relatively small size of cloud shadows compared to
clouds in the scene. Even very small amounts of disagreement (differ-
ences in defining cloud shadow boundaries, mistakes in Fmask or ref-
erence shadow mask) reduce the cloud shadow users and producers
accuracy greatly.
Fig. 6. Visual cloud cover vs. Fmask cloud cover.
5. Discussion and conclusion

The Fmask algorithm effectively finds clouds and cloud shadows,
which helps with a wide assortment of remote sensing activities.
The goal is to provide an automated method for screening clouds
and their shadows such that time series of Landsat images can be eas-
ily compiled. The need for effective cloud and shadow screening has
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Fig. 10. Visual cloud shadow cover vs. Fmask cloud shadow cover.
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grown tremendously for two primary reasons. First, the Landsat L1T
format now provides accurate enough registration of images that
they can be compiled into a time series without significant attention
to registration issues. And second, free access to the archive is chang-
ing what we consider a useful Landsat image. Now that images are
free, it can be worth processing images even if substantial portions
of the images are cloudy to extract the cloud free observations. As a
result, more images with more clouds are being used and the need
for automated cloud and cloud shadow screening is growing.

The estimates of percent cloud cover from Fmask are a slight im-
provement compared with ACCA estimates. The cloud masks generat-
ed from Fmask are significantly better than from the first pass of
ACCA, with cloud overall accuracy of 96.41% (84.8% in ACCA), cloud
producers accuracy of 92.1% (72.1% in ACCA), and cloud users accura-
cy of 89.4% (91.8% in ACCA). The cloud probability mask generated
from Fmask will be beneficial for customizing cloud masking results,
as instead of a binary mask, it can provide the probability of a pixel
being cloudy. Users can make their own decisions in choosing the
confidence level (e.g. 50%) for defining a cloudy pixel for their specific
Average Fmask Cloud Users Accuracy is 89.38% 
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Fig. 9. Histogram of Fmask cloud users accuracies.
applications. Fmask has achieved producers accuracy for cloud shad-
ow of more than 70% and users accuracy higher than 50%. The reliabil-
ity of these estimates is questionable due to the frequency of errors in
the reference datasets. By examining each cloud shadow mask care-
fully, we find Fmask identified many cloud shadows that are not in-
cluded in the cloud shadow reference masks. Therefore, more
accurate reference data for cloud shadows are necessary for better as-
sessment of cloud shadow detection algorithms.

There are some limitations in Fmask cloud detection. First, Fmask
may fail to identify a cloud if it is both thin and warm (Fig. 11 upper
left and upper right images). These errors of omission may not be that
important, as usually thin and warm “clouds” are actually haze or
aerosols and they can be further removed by atmospheric correction
(Vermote & Saleous, 2007). Second, Fmask may also identify other
very bright and cold land features (salt pans, cold snow etc.) as clouds
(Fig. 11 lower left and lower right images). We think commission is
better than omission in cloud detection, as this kind of error will
only remove a few clear-sky pixels from subsequent remote sensing
applications. Finally, as Fmask uses a scene-based threshold and ap-
plies this same threshold to all pixels in the image, it may not work
well for some images with very complex surface reflectances.

The cloud accuracy of Fmaskwould increase ifwe included other an-
cillary data such as a land/water mask, DEM data, and multi-temporal
data. The time required for Fmask to process one scene is determined
by the percentage cloud cover. Generally, it takes 0.5 to 6 min for
Fmask (1.6.0 Matlab version) to process one scene on an 8 core Linux
server. Thanks to the LEDAPS atmosphere correction tool, Fmask can
be completely automated (without any manual inputs or tuning)
based on the TOA reflectance files generated by LEDAPS.

One issue needing further attention is the establishment of a stan-
dard definition for clouds and cloud shadows. For example, what cat-
egory should we put pixels that are shadows from a high cloud falling
on a lower cloud? Should we include smoke, thick aerosols, and haze
in the cloud mask? Shall we still validate cloud shadows over water?
Answers to these questions would facilitate future accuracy assess-
ments and comparison of alternative methods.

In conclusion, a new cloud and cloud shadow masking algorithm
(Fmask) is the result of combining ideas from many past approaches
and integrating an innovative new object-based approach. It exhibits
high accuracy for cloud detection and is an improvement over the tra-
ditional ACCA cloud algorithm. At the same time it can also provide an
accurate cloud shadow mask which has limited remote sensing activ-
ities for a long time.



Warm thin clouds 

Cold bright salt pans 

Fig. 11. Two subset Landsat images from Mid-latitude South (p100_r82 and 20011212).(Lower left) shows a subset of Landsat image where commission of clouds was observed
(Bands 4, 3, and 2 composited). (Lower right) shows the corresponding Fmask cloud (yellow) and cloud shadow (green) mask. Black pixels are clear. (Upper left) shows a subset
of Landsat images where omission of clouds was observed (Bands 4, 3, and 2 composited). (Upper right) shows the corresponding Fmask cloud and cloud shadow mask. The red
arrows point to the omission and commission errors of clouds in Fmask results as examples.
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