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The Landsat Operational Land Imager (OLI) has 5 to 10 times better signal-to-noise ratios (SNRs) in all spectral
bands than previous Landsat instruments. SNR performance has long been recognized as a value in instrument
design, however, the impact on algorithm performance for earth science applications is poorly documented.
Since SNR performance may drive design/cost tradeoffs on future missions, a set of experiments were designed
to evaluate the impact of various SNR levels on algorithms applied to different science applications. The applica-
tion areas studied spanned a wide range including water quality, land cover and forestry. The experiments in-
volved producing data sets with a range of signal-dependent SNR values ranging from Landsat 7 ETM + levels
to OLI levels. Algorithms were then run on these otherwise identical data sets and evaluation metrics applied
to evaluate the relative performance versus SNR. In all cases, performance was shown to be a strong function
of SNR with substantial increase in performance as SNR increased (e.g. constituent retrieval errors reduced by
a factor of three). However, in some cases, the rate of increase slowed at higher SNR levels. Regrettably, the
point of diminishing returns was not the same for all applications leaving significant burden on design teams
to decide which application's needs could be fully met in terms of SNR requirements.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

The Operational Land Imager (OLI) onboard Landsat 8 represents a
marked improvement in medium resolution earth imaging (Irons,
Dwyer, & Barsi, 2012). Following in the Landsat Worldwide reference
system (WRS) II orbit with 30 m ground sample distance (GSD), the
data look very similar to Landsat's 5 and 7. However, unlike the TM in-
struments the OLI is a push-broom instrument with approximately
6000 across-track detectors. As a result the detectors can dwell on
each spot on the earth longer, significantly improving signal-to-noise
(Schott, 2007, Chapter 6). To take advantage of this improved signal-
to-noise ratio (SNR), OLI has an increased bit depth of 12 compared to
the Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+)
which had 8-bit data and the Landsat MSS sensor which had 6-bit
data. OLI also has two additional bands and slightly narrower spectral
bandwidths as seen in Fig. 1.

The correlation between higher SNR's and image quality is well rec-
ognized. In the remote sensing community this is perhaps most clearly
expressed in the General Image Quality Equation (GIQE). The GIQE is
designed to relate image metrics such as pixel size on the ground,
e impact of improved signal-to
(2016), http://dx.doi.org/10.1
edge sharpness, and SNR to the interpretability of black and white re-
motely sensed images (Leachtenauer et al., 1997). The GIQE suggests
that while image interpretability is a function of SNR it is nowhere
near as large a factor as pixel size or image sharpness and that after a
point increasing SNR will not have an observed impact for photo inter-
pretation purposes. Fiete and Tantalo (2001) took this further in terms
of the noise equivalent change in reflectance (NEΔR), showing that in-
terpretability was linearly related to NEΔR.

There is not as clear a body of literature relating SNR to the utility of
multispectral data. In part, this is because it typically requires very high
SNR data that can then be degraded so that images, whose only change
is in SNR, can be compared through some analytical application algo-
rithm. Williams et al. (1984) did just this after Landsat switched from
the 6-bit MSS sensors to the 8-bit TM sensors. They showed that
degrading 8-bit TM data to 6-bit data (i.e. roughly a factor of 4 in SNR)
resulted in a loss of approximately 5 percentage points in land cover
classification accuracy. Other studies have shown that improved SNR
can improve preprocessing algorithms for hyper-spectral data. Seidel
et al. (2008), showed that aerosol optical depth retrieval improved
with higher SNR and Chen (2006) shows that hyperspectral end mem-
ber selection algorithms perform better at higher SNR. Kruse (2000)
looked at AVIRIS imaging spectrometer data and found that the classifi-
cation accuracy and number of minerals mapped improved with SNR.
-noise ratios on algorithmperformance: Case studies for Landsat class
016/j.rse.2016.04.015
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Fig. 1. Landsat ETM+ a (top) and OLI b (bottom) spectral response functions.
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This was based on the roughly 20-times improvement in AVIRIS SNR
due to a number of instrument improvements from1987 to 1998. How-
ever, no quantitative values for the improvements were stated. Green
(2000), using AVIRIS data showed that the number of Minimum Noise
Fraction (MNF) images with eigen values above a meaningful informa-
tion threshold was directly related to SNR. However, the implication of
this for specific applications was not demonstrated. Swayze, Clark,
Goetz, Chrien, and Gorelick (2003) using simulated AVIRIS spectra
showed, using the Tetracorder algorithm, that the classification accu-
racy of individual spectra improved with SNR. The relationship of the
improvement to SNR being a function of the absorption spectrum of
the mineral. In general for Landsat class instruments (medium
Please cite this article as: Schott, J.R., et al., The impact of improved signal-t
instruments, Remote Sensing of Environment (2016), http://dx.doi.org/10.1
resolution–multispectral) there is only limited data relating SNR to al-
gorithm performance across any range of applications. The high SNR
achieved by OLI provided a potential source of data to support an inves-
tigation of the role SNR plays in algorithm performance.

In prelaunch testing the OLI instrument dramatically exceeded its
specified SNR and on orbit testing has verified that these high SNR
values are being maintained in operational use (Knight & Kvaran,
2014). SNR or radiometric resolution is almost always an important pa-
rameter in instrument design trade studies (Schott, 2007, Chapters 6 &
13). Generally speaking, improved SNR comes at the cost of poorer spa-
tial resolution, lower spectral resolution, less coverage, larger optics
(size and weight) and higher data rates. As we look to the next
o-noise ratios on algorithmperformance: Case studies for Landsat class
016/j.rse.2016.04.015
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generation of Landsat class sensors, the value of SNR will need to be
traded against many other competing parameters to arrive at accept-
able cost/performance points. In an effort to better characterize the
value of SNR for medium resolution (10–100 m) data, from an image
data utility standpoint, the authors, as a subset of the Landsat Science
Team (LST), undertook the studies reported here.

These studies took Landsat OLI data as a high quality, high SNR, ref-
erence point and then generated degraded image data to provide a
number of sample pointswhere the only differenceswere in SNRvalues.
Recognizing that the role of SNR relative to image utility is likely to vary
with application/algorithm, three distinct applications were chosen
where existing algorithms were in use studying OLI data. The applica-
tions include: water constituent retrieval, land cover classification, and
assessment of forest condition as characterized by Leaf Area Index
(LAI). These applications run a gamut from water resource assessment,
which we expect to be sensitive to SNR, because the target is so dark, to
the widely used land cover classification algorithms, which have been
used since the early Landsat MSS days (1972) with 6-bit data (Swain
& Davis, 1978). While not comprehensive in scope, we believe the
three rather disparate algorithms span the applications range that char-
acterizes much of the current use of Landsat data.

2. Data generation

In order to study the impact of SNR on algorithmperformance, it was
necessary to select a reasonable range of SNR values. In addition, since
SNR is a function of illumination levels and instrument response, we ex-
pect SNR to vary with wavelength (Fig. 2). We therefore choose to
bracket the studywith estimated SNR data characteristic of two sensors.
OLI represents the current state of the art of a push-broom technology
instrument built with relatively large size, mass and cost budget (Roy
et al., 2014). In addition, OLI as built significantly outperformed on its
SNR requirements (Knight & Kvaran, 2014). Therefore, OLI was chosen
as the high end of our SNR study. This was also attractive since the OLI
data archive provides us with real data to use as the starting point for
subsequent studies of data with degraded SNR. For the lower SNR
boundary we chose the Landsat 7 ETM+ SNR values. Since the ETM+
uses a whisk broom scanner and a 20 year old design we felt it repre-
sents a lower end for future SNR values.

Fig. 2 shows a family of SNR curves used for this study for the typical
radiance (Ltyp) levels specified for the OLI instrument. Morfitt et al.
(2015). The top curve is used as the OLI reference (or OLI100). It is
based on the on orbit assessment of OLI's performance (Morfitt et al.
(2015). The lowest curve reflects the ETM+ performance (low gain)
at approximately 12% of OLI100. The next lowest level represents the re-
quired SNR that was set in the OLI contract document (i.e. a level that
any vendor was expected to meet (Irons & Masek, 2006)) at about
Fig. 2. Plot of wavelength (Band #) vs. SNR for the various designs at typical radiance
(Ltyp).

Please cite this article as: Schott, J.R., et al., The impact of improved signal-to
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37% of OLI100. Two additional SNR levels between the requirement
and the OLI100 were included at 59% and 86% of OLI100 to provide addi-
tional design points. To simplify a naming convention, the spectral aver-
age of the percentage of the value of each curve relative to the
maximum curve (OLI100) was calculated over the blue to SWIR range
(6 bands) and is used to describe the aggregate SNR performance.
Note this is just a naming convention and visible through SWIR bands
were used as required for each algorithm. As seen in Fig. 2 this provides
us with approximately an order of magnitude change in SNR over the
various noise level “designs” to be studied.

Neither the noise level nor the SNR are constants within an image.
Rather as shown in Fig. 3 the SNR is a function of the scene radiance
level (i.e. the radiance of each pixel). For OLI the noise level was charac-
terized prelaunch for several radiance levels yielding the top curve in
Fig. 3 Morfitt et al. (2015). The remaining curves were generated by cal-
culating the ratio of the SNR at Ltyp for each “design” to the SNR at Ltyp
for OLI. This ratio was used to approximate the radiance dependent
SNR at the rest of the OLI test levels to produce Fig. 3. This process
was repeated for each band. At this point we can estimate the SNR ex-
pected for each radiance value in each band of each design to be studied.
Note; OLI band 1 was not available on ETM+ and it is not used in the
land cover, LAI, or Landsat 7water retrieval algorithms described below.

In order to utilize these SNR values a method to generate signal de-
pendent noise and appropriately introduce it to modeled or observed
data is required. This can be accomplished in a straightforward fashion
for modeled data, which is noise free. In this case the radiance with
noise (Ln) can be expressed in terms of the modeled (noise free) radi-
ance L as:

Ln ¼ L þ Rnd 0:1ð ÞN Lð Þ ð1Þ

where Rnd, (0.1) is a Gaussian random number generator with zero
mean and standard deviation of 1, N(L) is found by calculating the
SNR from the signal dependent curves shown in Fig. 3 for the radiance
level L and the design of interest, where we recognize that.

N Lð Þ ¼ L=SNR Lð Þ ð2Þ

When dealing with actual image data we need to adjust for the fact
that the data will already have some signal dependent noise, which for
OLI can be expressed as NOLI(L). NOLI(L) is obtained using the OLI100
curves for each band as shown in Fig. 3 and Eq. (2). The desired noise
level in the output, noise degraded, image Ni(L) can also be found
using the appropriate design curve from Fig. 3 for radiance L and Eq. 2.
The noise level (Nd(L)) that needs to be added to theOLI data to degrade
Fig. 3. Plot of radiance level vs. SNR for the design cases used in this study (Band 2).

-noise ratios on algorithmperformance: Case studies for Landsat class
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Fig. 4. Comparison of noise levels in noise degraded images to the design values to verify proper implementation of the algorithms. (Note these are for a specific dark target not Ltyp).
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the SNR to the desired noise level Ni(L) can be expressed as:

Nd Lð Þ ¼ Nið Lð ÞÞ2
h

‐ NOLI Lð Þð Þ2
i

ð3Þ

where we recognize that

Ni Lð Þ ¼ Nd Lð Þð Þ2 þ NOLI Lð Þð Þ2
h i1=2

ð4Þ

and take advantage of the fact that noise adds in quadrature (i.e. the
noise squared is the sum of the squared values of each independent
noise source). Thus, the radiance for each pixel of the degraded image
Li can be expressed in terms of the radiance of the input OLI pixel
(LOLI) according to.

Ld ¼ Rnd 0:1ð ÞNd Lð ÞþLOLI ð5Þ

In practice, the curves associated with Fig. 3 are produced for each
band and piece wise linearly interpolated to generate the appropriate
SNR values to usewith Eq. 2 to calculate the noise level. Themean signal
dependent noise levels are calculated using Eq. 3 and the sampled noise
for a given pixel obtained and added to the original OLI image pixel ac-
cording to Eq. 5.

Fig. 4 shows the results of a study to verify that the noise addition
was being performed correctly (i.e. that Eqs. 2, 3 & 4were implemented
correctly). This study involved injecting noise into a uniform region of
an image and then comparing the observed SNR to the desired SNR.
Fig. 5 shows a natural color representation of a simulated scene
consisting of a water surface to which noise levels associated with the
various designs have been added. This provides a visual representation
of noise levels from the nearly indiscernible levels for OLI 100 to the ob-
vious noise characteristics in the ETM+ data (12%).

With the tools described in this section the various noise models
(designs) introduced in Fig. 2 can be used to generate noise to be
added to fully synthetic data (as in the water quality studies in
Section 3) or to calculate the appropriate noise to add to actual OLI
Fig. 5. Simulated natural color image of a water surfac

Please cite this article as: Schott, J.R., et al., The impact of improved signal-t
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data to achieve the desired noise levels. The impact of noise on algo-
rithm performance in different applications is discussed in the next
three sections.
3. Water constituent retrieval

Water is a dark target across all bands. As a result, detailed multi-
parameter analysis of water constituents has been a difficult task
using Landsat 5 and 7. Modeling results of expected OLI performance
showed promise due largely to the improved SNR (Gerace, Schott, &
Nevins, 2013). In this study, we attempt to show how the performance
of a particular water constituent retrieval algorithm is specifically re-
lated to SNR.

The algorithm used is designed to simultaneously estimate the con-
centrations of chlorophyll [CHL] and suspendedmaterials [SM], and the
absorption of colored dissolved organic material [CDOM]. These are the
three primary coloring agents in water and their values and change in
value across space and time can tell us a great deal about the condition
of awater body. The algorithmused generates a three-dimensional look
up table (LUT) using the Hydrolight in water radiative transfer model
(Mobley, 1998). The model's inputs are the inherent optical properties
of water and the three constituents, as well as, illumination, viewing
conditions and the roughness of the water surface (as defined by wind
speed). The output is a spectral reflectance curve of the water surface
for each triplet of coloring agents modeled ([CHL], [SM], [CDOM]) as
seen in Fig. 6. The spectral reflectance curves are then convolved with
the relative spectral response (RSR) functions (Fig. 1a) for each band
of the sensor of interest (OLI in this case) to generate sampled reflec-
tance spectra (Note only the VNIR bands were used for water which
has near zero reflectance in the SWIR). Given an image derived reflec-
tance spectrum, the LUT can be searched using a nonlinear least squares
optimization to find the values of the water constituents that would
generate a best match. The match uses the root mean square error
(RMSE) between the curves as the function to minimize (see Fig. 6).
For this portion of the study only modeled data without an atmosphere
e to which various noise levels have been added.

o-noise ratios on algorithmperformance: Case studies for Landsat class
016/j.rse.2016.04.015
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Fig. 6. Illustration of the water quality constituent retrieval algorithm.
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were used which yields results in surface leaving reflectance. In this
way, all of the performance variation can be attributed to SNR.

A random spectrum generated byHydrolightwith appropriate noise
added to it is compared to the look up table (LUT) and the concentration
values from the LUT for the best match are assigned to that sample.

The data for this study consisted of reflectance curves that were pro-
duced by Hydrolight for triplets of [CHL], [SM], [CDOM] concentration/
absorption values which were chosen by a random number generator.
The reflectance curves were then convolved with the appropriate RSR,
had noise added as described in Section 2 and were then quantized to
12 bits using a quantizer designed to span the OLI signal range. These
resampled spectra were treated as simulated image data and fed into
the constituent retrieval algorithm, which returned a triplet of concen-
tration/absorption values for each sample spectrum.

The errormetric for this process is simply thedifference between the
constituent values input to Hydrolight that were used to generate the
simulated image reflectance curve and the constituent values retrieved
by the algorithm. For each constituent, the RMSE of all the simulated
Fig. 7. Plot of constituent retrieval erro
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image pixels is calculated and this RMSE value is then expressed as
the percentage of the range of the constituent values included in the
study. Separate errors are computed for each constituent. The results
are plotted in Fig. 7 vs. the average SNR relative to the OLI100 SNR (i.e.
the designs being tested). Note that the ETM+ design (SNR12%) did
not include the coastal aerosol band in the analysis. Also shown in
Fig. 7 is a set of designs, which includes all the OLI bands plus a red
edge band at 708 nm(aMERIS bandwasused),which is designed to im-
prove chlorophyll retrieval (Rast, Bezy, & Bruzzi, 1999).

If we first consider just the designs using the Landsat bands, we see
that the error in constituent retrievals decreases as SNR increases. In ad-
dition, the rate of improvement tends to decrease as SNR increases sug-
gesting that we may reach a point of diminishing returns. Recognizing
that these results represent a best-case scenario, with perfect atmo-
spheric compensation, a reasonable goal would be to set desired errors
at 5 to 10% of the range. These results suggest that the 10% value could
be achieved for [SM] and [CDOM] with the OLI required design (37%
in Fig. 7) but that a considerably higher SNR (82% of OLI100) would be
r vs. design for each constituent.
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Table 1
Land cover classes used in the different classification tests.

New Orleans Boston Rockwood

1 Brown Wetland Water Water
2 Green Wetland Wetland Wetland
3 Forest Forest Forest
4 Barren Herbaceous Herbaceous
5 Herbaceous Barren Barren
6 Water Low Density Built Low Density Built
7 Low Density Built High Density Built High Density Built
8 High Density Built Cropland Cropland
9 Cropland Other
10 Mined Field
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required for [CHL]. If we require the error to be less than 5% of the range
in constituent values, we would need to achieve the 58% of OLI100 SNR
design for [SM] and [CDOM] and could not reach the 5% goal for [CHL]
even with the OLI 100 SNR.
Fig. 8. Results for 12 pairwise comparisons of image classification results (3 locations—top
is New Orleans, LA, middle is Boston, MA, and bottom is Rockland, ME × 4 levels of image
SNR (1 is 37%, 2 is 59%, 3 is 82% and 4 is 100%)).
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However, the second set of designs in Fig. 7 shows that is some cases
there may be alternate methods to address a problem. In this case, we
repeated the SNR study with one additional band included at 708 nm
that is often included in instruments designed for water quality studies
(which has not been a primary Landsat objective). We used the RSR for
the 708 nmMERIS band and interpolated SNRs from adjacent bands to
estimate what the performance might be for our various designs. The
results clearly show that such a bandwould greatly improve the perfor-
mance for [CHL]with the goal of errors less than 10% of the range in con-
stituent values obtainable with SNRs associated with the OLI design
specification (37% in Fig. 7) and the goal of 5% of the range being achiev-
able with OLI100 SNRs (100% in Fig. 7).

4. Land cover: classification

Image classification accuracies vary with the number of classes and
their spectral separability as well as image quality. Many studies have
compared classification algorithms (Carpenter, Gjaja, Gopal, &
Woodcock, 1997; Rogan et al., 2008), and many studies evaluate the
contributions of various kinds of data as input to image classification
(Carrão et al., 2008; Li and Chen, 2005; Corcoran et al., 2012; Zhu,
Woodcock, Rogan, & Kellndorfer, 2012), but it is more difficult to find
studies that compare image data from the same sensor but with differ-
ent SNRs. The basic idea is that one cause of error in image classification
is noise, and as the SNR improves, errors in classification results should
decline.

The three images used for this experiment are located near New
Orleans, LA (path 22, row 39), Boston, MA (path 12, row 31) and
Rockwood, ME (path12, row 28). Subsets (3000 by 3000 pixels) from
the original scenes with 0% cloud cover were used. Training data for
each of the three regions were collected for each of the classes listed
in Table 1. The classes used in this test are a relatively simple set and
typical of those used in land cover classification. Given thewide number
of uses of land cover information, there are not standardized sets of clas-
ses or definitions of individual classes. For this test, these classes are
intended to be examples of the kinds of classes many users typically
desire.

Images were created for the different SNRs as described in Section 2.
The random forest classification algorithmwas used for this experiment
(Brieman, 2001). The same training data were given to the classifier
such that the only factor that differed between trials was the SNR of
the input data. To evaluate the results, we made pairwise comparisons
between the classified maps generated from the image simulated to
have the SNR of ETM+ (SNR12%) and all other SNR levels. In this
pairwise manner, we first identify the pixels where the classifications
differ, as it is only where they differ that we can evaluate the effect of
image quality on classification accuracy. If the accuracies of the pixels
Fig. 9. Average difference in classification accuracy results for the three tests sites as a
function of SNR.
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Fig. 10. Classification results for a small area for all the different SNRs. Note that the amount of “speckle” decreases as the SNR increases.
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where they differ are similar between trials, then improved SNR is not
improving classification results. However, if the accuracy for the trials
with higher SNR is higher than for the ETM+ equivalent SNR, then we
can conclude that improved SNR improves image classification.

About 85% of the pixels in each comparison are classified as the same
in all trials and these pixels are not used in the comparison. A random
sample (205 pixels for each comparison) of the pixels where the classi-
fications differed was selected. For each of these pixels the true land
cover class was identified through careful examination of very high res-
olution imagery in GoogleEarth. These “ground truth” pixels were then
comparedwith the classification results to determine whether the clas-
sification from the ETM+ simulated image (SNR12%) or the higher SNR
alternative was correct, or neither were correct.

The results are plotted in Fig. 8. In total there are twelve pairwise
comparisons presented, each based on a different random sample, as
there is a different set of pixels where the classifications differ for each
pairwise comparison. In each pairwise comparison, the accuracies of
the ETM+ simulated (SNR12%) and the higher SNR alternatives are
plotted next to each other. The left bar in each comparison is the per-
centage of the pixels where the answer differs and the ETM+ answer
Fig. 11. Ground LAI plot locations shown as yellow triangles over Landsat 8 imagery displayed
b) Path 16 Row 34 on 10/5/13 and c) Path 21 Row 37 on 2/13/14.
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is correct, and the right bar is the percentage of those same pixels that
differwhere the alternative SNR level is correct. In these graphs, it is im-
portant to remember that the combined accuracy (the sum of the two
accuracies) can only be as high as 100% and if there were no effect re-
lated to the SNR of the input images, then the accuracies would be
roughly equal. Where the sum of the two accuracies is less than 100%,
some pixels were wrong in both classifications. In all twelve cases (3
sites times 4 different SNR levels), the images with improved SNRs
have higher classification accuracies among the pixels where the classi-
fications differed. Also, as the SNR increases through the four alterna-
tives at each of the 3 sites, the accuracy of the classifications also
increases. However, note that the inverse is not always true, meaning
the accuracy for the ETM+ results does not always decline as the SNR
of the alternative images increases. In general, the ETM+accuracies de-
cline, but not in every case. This result illustrates the stochastic nature of
image classification and the reason we included three different sites in
the experiment to ensure that our findings would be representative.

The first conclusion is that image quality asmeasured by SNRs influ-
ences classification accuracy. This is seen in Fig. 9, which shows the av-
erage improvement in classification accuracy between the scenes with
with the color-infrared band combination 5, 4, 3 as RGB. a) Path 16/Row 34 on 3/28/13,
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Table 2
Regression results between ground measured LAI and Landsat 8 OLI SNR image based simple ratio vegetation index. SNR increases from left to right from ETM+ to Landsat 8 OLI 100%.

Path/row time period Landsat date ETM + 12%
R-sq (RMSE)

OLI required 37%
R-sq (RMSE)

OLI 59%
R-sq (RMSE)

OLI 82%
R-sq (RMSE)

OLI 100%
R-sq
(RMSE)

Number of plots

16/34 2013 Min 3/28/13 84.1 (0.260) 84.9 (0.253) 84.9 (0.254) 84.8 (0.254) 84.7 (0.255) 19
16/34 2013 Peak 10/5/13 75.6 (0.660) 88.7 (0.449) 91.0 (0.401) 92.1 (0.376) 93.0 (0.355) 8
21/37 2014 Min 2/13/14 72.0 (0.571) 70.4 (0.587) 69.8 (0.594) 69.4 (0.597) 69.1 (0.601) 21
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ETM+ noise levels, and the design noise levels (of the pixels that
change) versus the mean SNR. This plot shows a consistent and steady
improvement in accuracy with SNR suggesting that even better results
might be possible if higher SNR data were available.

An additional observationwas that there appeared to be less speckle
effect in the classification results as image SNR increased (Fig. 10).
Image classification results generally suffer from high uncertainties at
the scale of individual pixels and it appears that the improved SNR of
OLI images may reduce this undesirable effect.

5. Leaf area index prediction

Ground estimates of leaf area index (LAI) were collected using the
LI-COR LAI-2200C Plant Canopy Analyzer at locations in loblolly pine
plantations at two study sites near Appomattox, VA and Tuscaloosa,
AL (see Fig. 11) on thirty by thirty meter plots. These estimates were
used as the dependent variable in regression models with the simple
ratio vegetation index (SR) calculated fromLandsat imageswith varying
degrees of SNR. SR values were extracted for each pixel containing a LAI
plot center according to:

SR ¼ NIR=RED ð6Þ

Where NIR and RED are the near infrared and red image radiance
values respectively.

Regression model fits improved with the increase in SNR from
ETM+ imagery to OLI imagery for the two 16/34 images (Table 2),
but not for the 21/37 image. SNR appears to be more important at
peak LAI than at minimum LAI given the larger increase in model accu-
racy for the 10/5/2013 image as SNR increased. The variability within
ground based LAI estimates may play a bigger role than SNR in this
application.

For theOctober data (peak LAI) the increase in correlation (R2 value)
with SNR is over 15 points (Fig. 12). For this case where the vegetation
index and groundbased LAImeasurements are highly correlated, the in-
creases in correlation with SNR is most dramatic with the step from
ETM+ (12%) to OLI specified (37%) levels, with continuing but smaller
improvements as SNR continues to increase.
Fig. 12. Plot of correlation coefficient (R2) vs. SNR design for the nearmaximum LAI study
date (10/5/13).
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6. Conclusions & recommendation

As illustrated in Figs. 7, 9 and 11, increases in SNR, from the ETM+to
the OLI levels, show improvements at each step up in SNR for all the ap-
plications studied (Note this was not the case for the nearminimum LAI
images). More importantly, the increases were not only significant (up
to 37% increase in classification accuracy of the changed pixels and
change in R2 from 76 to 93% for the correlation with LAI (Figs. 9 & 11)
but in some cases (e.g. water quality) have made sufficient improve-
ment to make an otherwise unacceptable approach viable (e.g. chloro-
phyll errors reduced from 30% to less than 10% of the range [Fig. 7]).
For the small sample studied here, it appears the OLI as built SNR may
be approaching the useful limit of SNR as we see the improvements in
performance beginning to taper off (at least for these algorithms and
applications). On the other hand, for the land cover classification case
(see Fig. 9), there still appears to be room for improvement at higher
SNR (i.e. the step up in classification accuracy is not substantially
diminishing with a step up in SNR even at the OLI100 level).

In conclusion, sizable improvements in algorithm performance tied
directly to SNR improvements were shown for the three different algo-
rithms in three different application areas studied here. On the other
hand, for the LAI study on near minimum LAI images little or no im-
provement with SNR was shown. This suggests that, in many applica-
tions where models of the phenomenology are well captured by the
algorithms such that instrument noise is a significant source of residual
variation in the model (i.e. algorithm performance), SNR increase will
improve performance. However, in cases where algorithm performance
is limited by variations in phenomenology not captured in the algorithm
then SNR improvements will not be significant. Response to SNR varia-
tion is not a way in which we have traditionally characterized or evalu-
ated our algorithms since SNR was not a variable to which we have had
ready access. With the high SNR available from Landsat 8 OLI the meth-
odology presented here can be readily applied to a wide range of algo-
rithms/applications to evaluate the response to SNR changes. Our
limited study suggests, that there are likely to be numerous algorithms
that improve in performance as we increase SNR, particularly by nearly
an order of magnitude from ETM+ to OLI.

We recommend that similar studies be conducted to provide a pub-
lished data base to enable instrumentation engineers to adequately factor
in SNRperformance to trade space studies for thenext generation of instru-
ments. There is no question that therewill be a push to improve spatial res-
olution and spectral resolution (band width and number of bands). These
improvements often come at the cost of SNR (Schott, 2007, Chapter 13).
As these studies clearly point out, SNR should be an important part of the
design trade space. However, it can only be effectively traded if we know
the impact of SNR on a range of applications/algorithms. In closing we
note that, the dramatic improvements in algorithm performance with
SNRshownhere are availablenowto theentire remote sensing community
thanks to the outstanding SNR levels that Landsat 8′s OLI has achieved.
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