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A B S T R A C T

The first national product of Surface Water Dynamics in France (SWDF) is generated on a monthly temporal scale
and 10-m spatial scale using an automatic rule-based superpixel (RBSP) approach. The current surface water
dynamic products from high resolution (HR) multispectral satellite imagery are typically analyzed to determine
the annual trend and related seasonal variability. Annual and seasonal time series analyses may fail to detect the
intra-annual variations of water bodies. Sentinel-2 allows us to investigate water resources based on both spatial
and temporal high-resolution analyses. We propose a new automatic RBSP approach on the Google Earth Engine
platform. The RBSP method employs combined spectral indices and superpixel techniques to delineate the
surface water extent; this approach avoids the need for training data and benefits large-scale, dynamic and
automatic monitoring. We used the proposed RBSP method to process Sentinel-2 monthly composite images
covering a two-year period and generate the monthly surface water extent at the national scale, i.e., over France.
Annual occurrence maps were further obtained based on the pixel frequency in monthly water maps. The
monthly dynamics provided in SWDF products are evaluated by HR satellite-derived water masks at the national
scale (JRC GSW monthly water history) and at local scales (over two lakes, i.e., Lake Der-Chantecoq and Lake
Orient, and 200 random sampling points). The monthly trends between SWDF and GSW were similar, with a
coefficient of 0.94. The confusion matrix-based metrics based on the sample points were 0.885 (producer's
accuracy), 0.963 (user's accuracy), 0.932 (overall accuracy) and 0.865 (Matthews correlation coefficient). The
annual surface water extents (i.e., permanent and maximum) are validated by two HR satellite image-based
water maps and an official database at the national scale and small water bodies (ponds) at the local scale at Loir-
et-Cher. The results show that the SWDF results are closely correlated to the previous annual water extents, with
a coefficient> 0.950. The SWDF results are further validated for large rivers and lakes, with extraction rates of
0.929 and 0.802, respectively. Also, SWDF exhibits superiority to GSW in small water body extraction (taking
2498 ponds in Loir-et-Cher as example), with an extraction rate improved by approximately 20%. Thus, the
SWDF method can be used to study interannual, seasonal and monthly variations in surface water systems. The
monthly dynamic maps of SWDF improved the degree of land surface coverage by 25% of France on average
compared with GSW, which is the only product that provides monthly dynamics. Further harmonization of
Sentinel-2 and Landsat 8 and the introduction of enhanced cloud detection algorithm can fill some gaps of no-
data regions.
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1. Introduction

1.1. Background

Water bodies are the main component of the land surface. The ac-
curate spatial detection and dynamic monitoring of inland water bodies
are important tasks in many applications, such as sustainable land and
water management (Zou et al., 2017), water volume and water level
estimation (Crétaux et al., 2016; Ohanya et al., 2013), natural hazard
analysis (including flooding, drought, and urban inland inundation)
(Huber et al., 2013; Mueller et al., 2016), and local climate and zo-
ology-related analysis (Huber et al., 2015; Sun and Chen, 2012).
Compared with conventional survey methods, remote sensing ap-
proaches monitor water body dynamics in time- and cost-saving modes.
Various types of remote sensing optical imagery (with very high, high,
and moderate spatial resolutions) have been utilized to monitor inland
water bodies. (i) Water body maps from very high-resolution (VHR)
optical satellite imagery (Huang et al., 2015; Xie et al., 2016a) and
aerial imagery (Ford, 2013) have fine spatial resolutions, but the data
are expensive to obtain and may not support long-term dynamic mon-
itoring. (ii) The highly repetitive coverage of the Moderate Resolution
Imaging Spectroradiometer (MODIS) offers the possibility of dynamic
monitoring every few days (Che et al., 2017; Klein et al., 2014; Lu et al.,
2018; Wang et al., 2014), but the spatial resolution of 250 m is ex-
tremely coarse, especially for subtle variations in inland water bodies.
(iii) High resolution (HR) multispectral satellite remote sensing imagery
balances temporal frequency and spatial resolution (Li and Gong, 2016;
Yésou et al., 2016) and has been commonly utilized because this ima-
gery offers the following advantages: vivid spectral information related
to water characteristics (typically in the green, near infrared (NIR), and
short-wavelength infrared (SWIR) bands), an appropriate spatial re-
solution (tens of meters), repetitive monitoring (i.e., nearly half a
month), large-area coverage and free access.

Considerable effort has focused on extracting the seasonal and an-
nual dynamics of the surface water extent at large scales, typically using
Landsat imagery (Li and Gong, 2016; Pekel et al., 2016; Tulbure et al.,
2016). However, inland surface water bodies are dynamically changing
and undergoing severe drainage, especially for ephemeral streams and
lakes. Higher-resolution monitoring, such as using monthly time-series
analysis, can better capture the interannual variation in the surface
water extent and presents the shrinking and inundation that occurs
during the year. Satellite-based monitoring of the monthly extent of
surface water bodies can integrate with hydrological models and me-
teorological data for further analyses.

Copernicus, the EU's Earth Observation Program, ensures the reg-
ular observation and monitoring of Earth's sub-systems, including the
atmosphere, oceans, and continental surfaces, and this program pro-
vides reliable, validated and guaranteed information to support a broad
range of environmental and security applications and decisions. The HR
optical component, the Sentinel-2 mission (Drusch et al., 2012), ac-
quires high spatial resolution optical observations (as high as 10 m)
over global terrestrial surfaces with a high revisit frequency (approxi-
mately five days) using a bi-satellite system, which is important for land
cover dynamic mapping and updating. Sentinel-2 can effectively extract
the distribution of land surface water at a resolution of 10 m (Du et al.,
2016; Gong et al., 2019; Wang et al., 2018; Yang et al., 2017, 2018;
Yésou et al., 2016), but its potential for dynamic water body monitoring
and change detection deserves more attention considering the high
revisit frequency of the satellite (Ogilvie et al., 2018a).

1.2. Related works

1.2.1. Distribution of surface water
During the last 25 years, there have been many approaches to ex-

tract water bodies from multispectral imagery (Tables 1 & 2). These
approaches can be divided into three levels: pixelwise classification,

object-based image analysis (OBIA) and subpixel fraction estimation.
Pixelwise approaches directly extract the pixels associated with water
body areas, mainly considering the spectral characteristics of targets.
OBIA groups the adjacent pixels with similar features into homo-
geneous clusters, which provides valuable information, including
spectral, textural, shape, and spatial relationships. Subpixel fraction
estimation considers the mixed pixels in remote sensing images and
estimates the fraction of water bodies in each pixel using the spectral
mixture analysis (SMA) method. However, the relevant methodologies
fall into two categories depending on whether training samples are
needed. The sample-based approach relies on the training dataset for
supervised classification at both the pixel and object levels or on pure
endmember selection to derive the subpixel water body fraction. The
rule-based approach is based on prior knowledge of the target and
background instead of the known sample data.

Among the rule-based approaches, water indices and binary
thresholding-based methods are characterized by easy implementation
and a high calculation efficiency and are thus widely utilized (Table 2),
especially in large-scale and time series analyses (Campos et al., 2012;
Pekel et al., 2016; Thomas et al., 2015; Zou et al., 2017). Water indices
differentiate the water bodies (normally with positive values) from the
background (tending to negative values). Many water indices have been
designed to enhance the separation between water bodies and other
land cover types (Table 2). Water indices can be directly utilized for
water mapping based on thresholding (Allen and Pavelsky, 2018; Fan
et al., 2018) and serve as the basis for other algorithms, such as ma-
chine learning (Isikdogan et al., 2017), object-level segmentation
(Mitkari et al., 2017), and subpixel mapping (Zhou et al., 2014).

1.2.2. Dynamics of surface water
Most previous large-scale and time series mapping studies of the

surface water extent were conducted based on MODIS and Landsat
datasets (Aires et al., 2018), and the spatial resolution was generally
250 m or 30 m, respectively (Yésou et al., 2011). The dynamics of the
surface water extent have been mapped at three different time scales
using Landsat data, including interannual, seasonal/inner-annual, and
multi/bi-temporal change analyses (Table 3). (i) Most works utilized
Landsat series data to continuously monitor the general trend of the
surface water extent over several decades. Rokni et al. (2014) modeled
the spatiotemporal changes in Lake Urmia from 2000 to 2013 and re-
ported a dramatic decreasing trend. Thomas et al. (2015) mapped the
inundation and flooding patterns of the Macquarie Marshes by selecting
Landsat images (1989–2010) over a range of flood magnitudes. Deng
et al. (2017) monitored the extent of the spatiotemporal changes of a
lake in Wuhan, China, based on Landsat images from 1987 to 2015. (ii)
The seasonality of surface water based on interannual monitoring has
also been widely explored. The most famous work was conducted by
the European Commission's Joint Research Centre (JRC) (Pekel et al.,
2016), who developed high-resolution maps of the global surface water
(GSW) occurrence, change, seasonality, and transition using Landsat
data at 30 m resolution. In addition, Campos et al. (2012) derived
seasonal and permanent water data between 2007 and 2011 and
monitored the decrease in water resources in Africa. Tulbure and Broich
(2013) studied spatially and temporally explicit time series of a surface
water body on the Swan Coastal Plain from 1999 to 2011 and adopted
landscape metrics to determine the extent of changes in the seasonally
continuous surface water body after comparing summer and winter
images. Zou et al. (2017) generated four water body extent maps
(maximum, year-long, seasonal, and average maps) of Oklahoma from
1984 to 2015 based on the annual water body frequency. (iii) Bi-/
multitemporal images are typically applied to investigate flooding
mapping and land use/cover (LULC) changes. Chignell et al. (2015)
utilized pre- and post-flood Landsat 8 images to produce a flood layer
image at the regional scale of the Colorado Front Range Flood in 2013.
Bayram (2013) analyzed the combined shoreline and LULC changes of
the Terkos Lake basin using Landsat satellite images from 1986, 2001,
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and 2009.
Nonetheless, more fine-resolution temporal monitoring is necessary

to reflect the subtle variabilities in water bodies on a monthly scale. The
monthly surface water occurrence based on multispectral imagery is
generally ignored. To our knowledge, monthly dynamics have only
been assessed by Hui and Xu (2008), Dronova et al. (2011), Campos
et al. (2012) and Pekel et al. (2016). Hui and Xu (2008) monitored the
monthly changes in Poyang Lake, China, between November 1999 and
October 2000, using eight images acquired from Landsat 5 TM and
Landsat 7 ETM+. Dronova et al. (2011) selected four images acquired
in November 2007 and January, February, and March 2008 using the
Beijing-1 microsatellite and examined the surface cover composition
and its changes at Poyang Lake. Campos et al. (2012) chose one image
per month between 2001 and 2010 to analyze the historical trend of the
water bodies, and yet, these researchers could not monitor the real-time
changes in the water bodies. JRC GSW recorded the entire history of
water detection on a month-by-month basis between March 1984 and

December 2018. However, the coverage of the monthly map is still
limited by an insufficient number of valid observations based on
Landsat data. Currently, the active Landsat 7 and 8 satellites theoreti-
cally allow an 8-day repeat coverage of the land surface. However, on
May 31, 2003, the scan line corrector (SLC), which compensates for the
forward motion of Landsat 7, failed and led to the loss of an estimated
22% of the dataset. Additional cloud cover and haziness can reduce the
number of valid images, which can result in a lack of sufficient data for
monthly dynamic mapping. Thus, the potential use of the Sentinel-2
constellation in water body monitoring and dynamic analysis is a highly
anticipated exploration.

1.3. Contributions

The main objective of this study is therefore to continuously
monitor the monthly, quarterly and annual changes in surface water
body dynamics in France at a 10-m spatial resolution using Sentinel-2

Table 1
Methodologies of water body extraction from multispectral imagery.

Training samples Different levels Literature Methodology Main water bodies

Sample-based methods Pixelwise supervised
classification

(Acharya et al., 2016)
(Deng et al., 2017)
(Isikdogan et al., 2017)
(Mueller et al., 2016)
(Sun et al., 2015)
(Tulbure and Broich, 2013)
(Verpoorter et al., 2012, 2014)
(Jakovljević et al., 2018)
(Tulbure et al., 2016)

Decision tree
Decision tree
Deep learning
Regression tree
Support vector machines (SVMs)
Classification tree algorithm
Supervised classification
Supported vector machine (SVM) classifier
Random forest

River and lakes
Urban lakes
Inland surface water
Across Australia
Urban water bodies
Western Australia
Global lakes
Open water bodies
Australia

Object-based supervised
classification

(Bayram, 2013)
(Yang and Chen, 2017)

Spectral indices
Spectral indices

Shorelines
Urban water bodies

Subpixel mixture analysis (Pan et al., 2016)
(Rover et al., 2010)
(Zhou et al., 2014)

Mixed land-water pixel extraction using SMA methods
Combined with regression-tree technique
Spectral mixture analysis combined with multiscale
extraction

Urban water bodies
Lakes, wetlands and small
water bodies
Rivers

Rule-based methods Spectral indices (Arvor et al., 2018)
(Avisse et al., 2017)
(Campos et al., 2012)
(Cian et al., 2018)
(Du et al., 2016)
(Fisher et al., 2016)
(Ogilvie et al., 2018b)
(Yamazaki et al., 2015)
(Yang et al., 2018)
(Feng et al., 2016)

Time series indices
Water and vegetation indices
Sample-based thresholding
Minimum, maximum and mean of the NDVI throughout
the entire stack of images
Indices and thresholding
New water index
Comparing popular water indices
Water indices and temporal analysis
Refined by constrained energy minimization
Terrain metrics and prior coarse-resolution water masks

Small water reservoirs
Small water reservoirs
Seasonal and permanent water
Flood mapping
Venice coastland
Eastern Australia
Small water bodies
Global water body map
Urban water bodies
Global inland water

Object/cluster-based image
analysis

(Chen et al., 2017)
(Mitkari et al., 2017)
(Sivanpillai and Miller, 2010)
(Xie et al., 2016b)
(Zhang et al., 2013)

Segment images using an active contour model
Combined with band indices
Unsupervised ISODATA algorithm to generate clusters
k-means/ISODATA to generate clusters
Object-oriented image analysis and edge detection

Glacial lake outlines
Glacial lakes
Water bodies
Lake and river
Coastlines

Table 2
Water indices designed for water body detection.

Water indices Literature Bands

Normalized difference water index (NDWI) (Gao, 1996) NIR, SWIR
Normalized difference water index (NDWI) (McFeeters, 1996) Green, NIR
Modified NDWI (MNDWI) (Xu, 2006) Green, SWIR
Automated water extraction index (AWEI) (Feyisa et al., 2014) Blue, Green, NIR, SWIRs
Multi-spectral water index (WuWI) (Wang et al., 2018) Blue, Green, NIR, SWIRs
Normalized difference mud index (NDMI) (Bernstein, 2012) Narrow bands with wavelengths of 795 nm and 990 nm
WI2015 (Fisher et al., 2016) Green, Red, NIR, SWIRs
NDWI built-up index (NDWI-DB) (Li et al., 2016) Blue, SWIR
Tasseled Cap Wetness (TCW) (Crist, 1985) Blue, Green, Red, NIR, SWIRs
Normalized difference vegetation index (NDVI) (Zhu and Woodcock, 2012) Red, NIR
NDWInm (Xie et al., 2016b) Composed of a visible band and an infrared band
Enhanced water index (EWI) (Wang et al., 2015) Green, Red, NIR, SWIR
Simple water index (SWI) (Malahlela, 2016) Blue, SWIR
LBV transformation (Zhang et al., 2017) Green, Red, NIR, SWIR
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imagery. The main contributions of this study include developing an
automatic methodology and application of the method at the national
scale.

First, an automatic rule-based superpixel (RBSP) approach is pro-
posed. RBSP automatically analyzes the large-scale spatiotemporal
variability and trends of surface water bodies. A new spectral index-
based approach is proposed to delineate the water body extent. This
method considers the different error sources in water body detection: (i)
built-up areas using an automated water extraction index (AWEI), with
noise associated with shadow and very-high albedo objects eliminated
and (ii) natural areas using the normalized difference muddy index
(NDMI) (for muddy and shallow water bodies) and the AWEI, with
noise associated with vegetation ice and snow eliminated. Additionally,
the proposed approach is implemented at the superpixel level.
Superpixel segmentation groups the connected pixels with similar
characteristics, and the automatic processing method is in accordance
with the research objectives. RBSP is automatically run in the Google
Earth Engine (GEE) platform for large-scale dynamic mapping.

Second, the Surface Water Dynamics in France (SWDF) product is
generated with monthly, quarterly and annual surface water extents. To
our knowledge, this product is the first national inland surface water
map published at the monthly temporal scale and a 10-m spatial scale.
RBSP is applied to monthly and quarterly images with medium com-
posite pixels. Annual occurrence maps are further generated based on
the pixel frequency of the monthly water maps. Our product is eval-
uated in both the dynamic and static states and at both national and
local scales: (i) the monthly dynamic water maps are compared with
satellite image based water masks at the national scale (JRC GSW
monthly water history) and at local scales (over two lakes, i.e., Lake
Der-Chantecoq and Lake Orient, as well as 200 random sampling
points); (ii) the annual surface water extent is validated by satellite
image-based water maps (JRC GSW annual product and Theia land
cover product (Inglada et al., 2017)) and an official database (BD
Carthage hydrological product, main watercourses, and major lakes and
reservoir) at the national scale and small water bodies (ponds) at local
scales (including the Sologne region of the Department of Loir-et-Cher).

2. Methodology

The methodology part involves the overall workflow (Fig. 1) of the
proposed RBSP approach and the generated SWDF product. First, Sen-
tinel-2 Level-1C data covering the France (Section 2.1) are collected.
Second, these images are preprocessed (Section 2.2) to eliminate the
invalid pixels covered by clouds, to divide the built-up and natural
scenes and to exclude the possible terrain shadows. Third, the proposed
RBSP approach is explained, including the different spectral rules for
natural and built-up scenes in Section 2.3 and superpixel technique to
generate the homogeneous objects in Section 2.4. Finally, the auxiliary
data and metrics used to evaluate the generated SWDF product are
described in Section 2.5.

2.1. Study areas

The experiments presented in this paper focus on European France
(i.e. mainland France and Corsica) (Fig. 2), which encompasses an area
of approximately 551,695 km2. France lies within the northern tem-
perate zone and mainly includes oceanic, semi-continental, Mediterra-
nean, and mountain climates (Fort and André, 2013; Terasmaa et al.,
2019). France possesses a wide variety of landscapes, from coastal
plains in the north and west to the mountain ranges of the Alps in the
southeast, as well as the Massif Central in the south and the Pyrenees in
the southwest. Additionally, the islands of Corsica lie off the Medi-
terranean coast.

France has an extensive river system mainly consisting of four major
rivers and their tributaries, including the Seine, Loire, Garonne and
Rhône Rivers, with a combined catchment area that includes over 62%
of the territory (Kristensen and Bogestrand, 1996). In addition, the
Rhine River and some tributaries flow through the northeastern portion
of the region. Knoema Corporation (2017) reported approximately
153,000 ha of inland water occupied by major rivers, lakes and re-
servoirs in France. Considering the water bodies larger than 1 ha,
Bartout and Touchart (2013) regarded 555,000 waters bodies as cor-
responding to a cumulated surface area of 450,000 ha.

Table 3
Temporal scales for water body dynamics monitoring.

Temporal scale Literature Methodology

Annual to decade trend (Allen and Pavelsky, 2018)
(Arvor et al., 2018)
(Avisse et al., 2017)
(Carroll and Loboda, 2017)
(Deng et al., 2017)
(Fan et al., 2018)
(Ogilvie et al., 2018a, 2018b)
(Pardo-Pascual et al., 2012)
(Sagar et al., 2017)
(Shi et al., 2017)
(Tseng et al., 2016)
(Liu and Yue, 2017)
(Zou et al., 2018)
(Yamazaki et al., 2015)

Water indices
Time series indices
Fmask, water and vegetation indices
Using the DSWE product
Indices and random forest
Water index
Water index and hydrological modeling
Shoreline subpixel detection
Median pixel compositing of NDWI stacks
An ‘eight-field’ morphological method
Surface water area and level changes
Band value and Otsu threshold
The relationship between water and vegetation indices
Spectral indices

Seasonality (Pekel et al., 2016)
(Tulbure and Broich, 2013)
(Zou et al., 2017)
(Tulbure et al., 2016)
(Sheng et al., 2016)

Expert systems, visual analytics, and evidential reasoning
Decision tree classification algorithm
Spectral indices
Random forest
Water index

Monthly changes (Campos et al., 2012)
(Hui and Xu, 2008)
(Pekel et al., 2016)

Water indices based on one image per month between 2001 and 2010
Water indices and empirical threshold
Expert systems, visual analytics, and evidential reasoning

Multi- or bi-temporal (Bayram, 2013)
(Chignell et al., 2015)
(Ghosh et al., 2015)
(Dronova et al., 2011)

OBIA and indices
Independent component analysis and indices
Water index
OBIA
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This study focuses on inland water detection and neglects coastline
monitoring. The national and administrative boundaries are from
GADM, the database of global administrative areas.

2.2. Datasets and GEE platform

This project uses the open source GEE as the research platform. The
GEE provides programming and graphic interfaces for scientific appli-
cations using remote sensing data. With the powerful Google cloud
storage and computational hardware technologies to accelerate re-
motely sensed data processing (Gorelick et al., 2017; Trianni et al.,
2015), GEE is advantageous for large-scale mapping and time series
analysis based on multispectral images, including analyses of surface
water (Pekel et al., 2014), forest cover (Hansen et al., 2013), paddy rice
planting areas (Dong et al., 2016), and settlement areas (Huang et al.,
2017).

The Sentinel-2 mission is composed of a two-satellite system,
Sentinel-2A and Sentinel-2B, which were launched on 23 June 2015
and 07 March 2017 respectively, allowing for a high revisit frequency
of approximately 5 days at the equator and 2–3 days at the mid-lati-
tudes. The high revisit frequency is important for dynamic land cover
mapping and monitoring. Sentinel-2 imagery includes 13 spectral bands
(Table 4) that span from the visible (VIS) and near infrared (NIR) bands
to the shortwave infrared (SWIR) bands at different spatial resolutions
on the ground ranging from 10 m to 60 m (Drusch et al., 2012). In this
study, six broad bands, including the VIS, NIR, and SWIR bands, and
two narrow bands, the Red Edge 3 and 4 bands, are utilized. The SWIR
and Red Edge bands with a spatial resolution of 20 m were resized to
10 m by dividing each pixel into 4 pixels with the same gray value to
maintain the same spatial resolution as the VIS and NIR bands.

The Sentinel-2 Level-1C dataset is the standard product for top of
the atmosphere (TOA) reflectance and has been completely integrated
into the GEE platform. A QA60 band is embedded in the Sentinel-2
Level-1C data, where opaque and cirrus clouds are computed based on
spectral criteria. In the project, the Sentinel-2 images are filtered and
collected with<20% cloud cover. Because the current QA60 band
cannot provide accurate cloud and cloud detection results, we select a
low cloud cover threshold (20%) to reduce the potential of including
omission errors in cloud/cloud shadow detection.

Here, we used 8955 Sentinel-2 images (based on the 20% maximum

Fig. 1. The workflow of the proposed RBSP approach and the validation of the
obtained SWDF product.

Fig. 2. (A) The study area of France consists of 96 administrative divisions and (B) an example of a Sentinel-2 annual composite image.
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cloud criteria) and analyzed an average of 373 Sentinel-2 observations
for each month. Then, the QA60 band associated with the image was
used to exclude the invalid pixels in each image. These images were
acquired between March 2017 and February 2019 to cover the four
seasons (starting on March 1, June 1, September 1, and December 1 for
spring, summer, autumn and winter, respectively) during a two-year
period. The annual map covers four quarterly datasets starting on
March 1.

To complete the task of Month-Of-Year (MOY) time series analysis,
images were placed into collections according to the calendar month.
Image composition combines spatially overlapping images into a single
image that has a medium value for each band within the monthly
collection. Fig. 3A displays the number of valid monthly composites of
24 months, which is the occurrence of available monthly surface water
maps. The proposed RBSP approach processes these 24 monthly time
series composite data between March 2017 and February 2019 and
generates the SWDF product. Over half of the land surface has been
covered with over 20 MOYs, and over 90% percentage of the land
surface is covered with over 17 MOYs. If utilizing quarterly composites,
approximately 96% percentage of the land surface is covered with all
eight seasons (Fig. 3B). The detailed statistics of the valid MOYs and
quarterly composites can be found in the Supplemental materials (Figs.
S3 and S4). That is, a short period of monthly analyses may result in the
occurrence of data gaps but are beneficial for observing the visible
changes in hydrology in a higher temporal resolution.

The auxiliary data include the JRC Global Human Settlement Layer
(GHSL), HydroSHEDS, and Height Above the Nearest Drainage (HAND)
datasets, all of which are available globally and have been integrated
into the GEE platform. The GHSL contain multitemporal information
layers on built-up areas, as derived from Landsat image collections
(1975, 1990, 2000, and 2015) (Pesaresi et al., 2015). The latest built-up
layer in 2015 was utilized to separate built-up and natural areas, and
water delineation issues stemmed from different error sources (Yang
et al., 2018).

Notably, terrain shadows are easily misclassified as water bodies,
and digital elevation models (DEMs) are widely used to exclude terrain
shadow effects. Two hydrologically relevant terrain models, HAND
(Donchyts et al., 2016b; Silveira et al., 2011) and HydroSHEDS (Lehner
and Döll, 2004), were utilized to eliminate mountain shadow effects.
Both models are based on high-resolution SRTM elevation data and are
generally used in hydrological and remote sensing applications, such as
water likelihood elimination and hill shadow correction. In this study,
HydroSHEDS was used to mask mountain areas with slopes> 5 de-
grees. HAND was used to mask terrain shadow areas in flat regions with
a threshold of 30 (Table 5).

2.3. Rule-based water body detection

Spectral indices highlight the pixels of objects of interest from the
background, and binary thresholding can be used to delineate the ob-
ject areas, which benefits time series and large-scale analyses due to the
ease of implementation. Water body mapping based on water indices
faces error identification, and the main noise source varies with dif-
ferent indices (such as the NDWI, MNDWI, and AWEI) and backgrounds
(mainly including vegetation, shadows, snow and built-up objects)
(Yang et al., 2018). Compared to natural and open areas, the urban
environment consists of heterogeneous human-made objects and can
lead to the severe overestimation of water bodies. In this study, the
AWEI, a water index for urban scenes (Feyisa et al., 2014), is adopted to
distinguish water bodies from the background. However, the AWEI still
faces some challenges; for example, the omission error of muddy and
shallow water bodies widely can be considerable in natural areas, and
commission error can occur due to the existence of building shadows
and high-albedo objects in urban areas. The study area is thus divided
into natural/open scenes and urban/built-up scenes to address the

Table 4
Band information of the Sentinel-2 Level-1C data.

Band
number

Band name Resolution (m) Band
number

Band
name

Resolution (m)

B1 Aerosols 60 B8 NIR 10
B2 Blue 10 B8A Red

Edge 4
20

B3 Green 10 B9 Water
vapor

60

B4 Red 10 B10 Cirrus 60
B5 Red Edge 1 20 B11 SWIR 1 20
B6 Red Edge 2 20 B12 SWIR 2 20
B7 Red Edge 3 20 QA60 Cloud

mask
60

Fig. 3. Number of valid MOYs (A) and quarterly composites (B) during a two-year period using Sentinel-2 with< 20% cloud cover.
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different types of error sources. The GHSL settlement regions desig-
nated in 2015 (Pesaresi et al., 2015) are adopted to separate the natural
and built-up areas, which were further processed with different rules
(Table 5).

Natural areas may include muddy and shallow water bodies, espe-
cially after rainfall events, and these areas could be underestimated by
the AWEI. The NDMI (Bernstein, 2012) is often utilized to highlight
muddy and shallow water pixels, and it was originally designed as a
filter to exclude those pixels and improve the accuracy of quick atmo-
spheric correction (QUAC). Thus, a mixed water index (MWI) with large
AWEI and NWI values is used to reflect the surface water extent in the
natural environment. Moreover, vegetation indices can suppress
shadow effects (Yamazaki et al., 2015) and vegetation misclassification
(Zou et al., 2017) in water body extraction. In this study, a mixed ve-
getation index (MVI) is used to eliminate errors in the surface water
extent, and only those pixels that meet the criteria (MVI − MWI ≤ 0.1)
are classified as open surface water body pixels. Additionally, ice and
snow generally display a very high degree of reflection at visible wa-
velengths and low reflection in the NIR and SWIR band. That is, ice and
snow have a similar spectral trend (from VIS to NIR and SWIR) as water
bodies, except for its stronger reflectance in the VIS bands. Thus, the
blue band (> 0.5) is used to exclude ice and snow cover in mountainous
areas.

Urban scenes involve heterogeneous human-made objects, where
some building shadow areas and very-high albedo objects may return
high positive values after AWEI calculations and serve as the main noise
sources for water body maps. The NIR band is used to eliminate very-
high albedo objects considering the ultralow reflectance of water
bodies. Although the AWEI can suppress low-albedo objects and sha-
dows in urban scenes, the misclassification of shadow areas still cannot
be avoided. Thus, we designed an urban shadow index (USI) to high-
light the shadows in urban scenes. The index considers the low re-
flectance of shadow areas in VIS bands compared to that of water
bodies, and the reflectance values of both types of objects tends to zero
in the NIR and SWIR bands.

The binary segmentation threshold is an important factor when
using spectral indices to delineate target objects. The imaging of spec-
tral indices involves polarization, where the pixel values of an object of
interest tend to be positive and the background returns negative values
in theory. The histogram of an index image is thus characteristic of a
bimodal distribution representing the object and background and a
deep and sharp valley between two peaks. Although a user-defined
threshold can return optimum results, it is more appropriate to use an
automated threshold or an empirical threshold to automate the deli-
neation process, especially for large-scale and time series analyses.

In this paper, an improved Otsu threshold is adopted based on the
Canny edge detection algorithm (Donchyts et al., 2016a). The perfor-
mance of the global thresholding techniques (including Otsu's method)
used for binary segmentation is limited for small objects and images
with abundant noise (Lee et al., 1990). Land surface water represents a

small fraction of the land cover in some administrative divisions in
France. Thus, the Canny edge detection algorithm is first used to
identify the pixels within the buffer areas of each edge. A histogram-
based Otsu approach is then applied to these pixels to filter low-prob-
ability water bodies in the scene. In addition, several soft empirical
thresholds are adopted to exclude error sources to some extent. Al-
though some pixels of these land cover types (such as snow, very-high
albedo objects and vegetation) may return values similar to those of
water bodies after water index calculation, they exhibit differences in
other spectral bands and indices. Thus, soft empirical thresholds can
effectively reduce overestimation issues. Table 5 lists the specific
thresholds for different objects. For example, very-high albedo masking
is given a loose threshold of 0.2 because water bodies absorb most of
the spectral energy, whereas high-albedo objects have strong re-
flectance.

2.4. Superpixel water body mapping

Due to the lack of consideration of contextual information, the
water body thematic maps obtained at the pixelwise level often ex-
perience a “salt and pepper” problem with sparse noise (Yang and Chen,
2017; Zhang et al., 2015). Rather than concentrating on individual
pixels, OBIA groups the nearby pixels with similar characteristics as
homogeneous clusters (Fernández et al., 2014; Huang et al., 2015;
Mitkari et al., 2017), which can effectively restrain the “salt and
pepper” phenomenon and convey valuable information, including the
spectral, textural, shape, and spatial information associated with ad-
jacent objects. However, OBIA can be time consuming when extracting
information from large images because most segmentation algorithms
use the pixel grid as the initial object representation (Stutz et al., 2018).
Additionally, automatic segmentation remains an unresolved problem
because segmentation is sensitive to many factors, such as the image
sensor resolution, scene complexity and number of bands (Csillik, 2017;
Gong et al., 2017).

In the field of computer science, superpixel segmentation has be-
come increasingly popular, and images are divided into hundreds of
non-overlapping superpixels (Ren and Malik, 2003). Similar to OBIA, a
superpixel is composed of pixels that are spectrally similar and spatially
adjacent, and a superpixel is the basic unit for subsequent processing
steps. Compared with OBIA, superpixel segmentation can be performed
automatically for large-scale remote sensing images with low memory
requirements and few parameters.

In the proposed framework, a simple non-iterative clustering (SNIC)
algorithm (Achanta and Süsstrunk, 2017) is applied to generate the
corresponding superpixel blocks. The SNIC algorithm is an improved
version of the simple linear iterative clustering (SLIC) algorithm
(Achanta et al., 2012) and is a fast and powerful algorithm with high
boundary adherence and low complexity (Gharibbafghi et al., 2018).
The SNIC algorithm has been proven to perform better and faster than
other state-of-the-art superpixel algorithms with less memory in

Table 5
The image characteristics used to delineate water bodies from the background using Sentinel-2.

Scenes Feature Equation or methodology Thresholding Objectives

Preprocessing HydroSHEDS HydroSHEDS.slope Empirical value: 5 Terrain shadows
HAND Combined with JRC water occurrence Empirical value: 30 Mountain shadows in flat areas

Built-up areas AWEIsh B2 + 2.5 × B3 − 1.5 × (B8 + B11) − 0.25 × B12 Edge-based Otsu Water maps
NIR band B8 Empirical threshold: 0.2 Very-high albedo noise
USI

× ×
2

(1 B2) (1 B3) (1 B4)
Edge-based Otsu Urban shadow noise

Natural areas MWI = +max{NDMI, AWEI }; NDMIsh
B7 B8A
B7 B8A

Edge-based Otsu Water maps

MVI = =+
+MVI ; NDVI ;EVI NDVI

2
B8 B4
B8 B4

= + × × +EVI 2.5 (B8 B4)
(B8 6 B4 7.5 B2 1)

Relative threshold
MVI − MWI > 0.1

Vegetation noise

Blue band B2 Empirical threshold: 0.5 Ice and snow noise

X. Yang, et al. Remote Sensing of Environment 244 (2020) 111803

7



comparisons based on segmentation benchmarks (Achanta and
Süsstrunk, 2017). This study aims to automatically and rapidly monitor
water body dynamics. SNIC is thus selected due to its speed and ability
to perform well for various study sites with a single set of default
parameters.

The main parameter of SNIC is compactness. A large value of
compactness reflects clusters with a generally rectangular shape. In this
study, a low compactness value (0.1) is selected considering the irre-
gular shape of surface water bodies. Superpixels are composed of
clustered individual pixels (Fig. 4), and the corresponding mean value
can be used as an input for the rule-based superpixel water body deli-
neation algorithm (Table 5). This approach results in a fast, simple, and
efficient computation.

2.5. Validation and comparison

A statistically rigorous validation for this product would be desir-
able. However, a statistically robust national validation dataset is not
available to measure the accuracy of this national water body database,
especially considering the extent of surface water dynamics.
Nonetheless, we evaluated our product with other existing global, na-
tional and local datasets (see S.2 in the Supplemental materials for the
available online addresses). We also performed a qualitative assessment
based on careful visual interpretation (see S.3 in the Supplemental
materials and attached Data). Table 6 lists the main reference datasets

from HR satellite image-derived water masks and official databases and
the evaluation metrics.

2.5.1. Evaluation metrics
The monthly and annual surface water extents are evaluated con-

sidering classification of water bodies and estimation of area extent.
The classification accuracy of water body pixels is measured by the
confusion matrix and detection rate (τ). Except for the distribution of
the water bodies, it is important to estimate the amount of the surface
water bodies. Based on sine and cosine fitting, a MOY model is used to
predict the tendency of the monthly surface water area. Linear regres-
sion and the correlation coefficient are also used to quantitatively
analyze the consistency of the surface water area estimation.

The confusion matrix divides the pixels in the study area into four
classes: TP (true positive), FN (false negative), FP (false positive), and
TN (true negative), reflecting accurate pixel extraction, missing water
bodies, inaccurate extraction, and the accurate rejection of non-water,
respectively. Four normalized metrics (Eq. (1)) were then calculated to
assess the performance of the proposed approach. The producer's ac-
curacy (PA) and user's accuracy (UA) were used to indicate complete-
ness and correctness, respectively. A low PA reflects serious omission
error, and a low UA indicates an extreme commission error. The ac-
curacy (ACC) and Matthews correlation coefficient (MCC) indicate the
general accuracy of the approach. In this study, the extents of surface
water and non-water bodies may be unbalanced and vary greatly. The

Fig. 4. SNIC segmentation to generate a homogeneous superpixel image using the mean value of the pixels within a block.

Table 6
Datasets used to evaluate SWDF monthly and annual surface water maps at national and local scales.

Monthly dynamic map Annual static map

Dataset Evaluation Dataset Evaluation

National Satellite image based
product

JRC GSW monthly water
history

Correlation analysis & trend
analysis

Theia OSO annual product
JRC GSW annual product

Confusion matrix & correlation analysis

Official database Not available BD Carthage in 2016
Main watercourse
Main lake and reservoir

Confusion matrix
Extraction rate
Extraction rate

Local Satellite image based
product

200 random sample points
Two seasonal lakes
South coastal area

Confusion matrix
Trend analyses
Qualitative analyses

Small water bodies in Loir-et-
Cher
provided from JRC GSW

Comparison based on confusion matrix &
number count

Official database Not available Small water bodies in Loir-et-
Cher

Confusion matrix & number count
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MCC considers the four confusion matrix categories and is thus more
informative than the ACC, especially when the water bodies account for
a small portion of the environment.

=
+

=
+

= +
+ + +

=
+ + + +

PA TP
TP FN

, UA TP
TP FP

, ACC TP TN
TP FN FP TN

, MCC

TP TN FP FN
(TP FP)(TP FN)(TN FP)(TN FN) (1)

A detection rate (τ) is used to measure how well the extent (for lake)
or length (for river) is accurately extracted. τ is the ratio of the correctly
extracted extent (for lake) or watercourse (for river) to the corre-
sponding value in the reference dataset (Eq. (2)). The extracted wa-
tercourse is calculated through an intersection process with the buf-
fering area of the experimental river extent considering the positional
deviation of the reference dataset.

= Product(area/(buffer area) ) Reference(Area/length)
Reference(area/length) (2)

The monthly surface water area model is a function of the sines and
cosines shown in Eq. (3), and it is initially used to predict the day-of-
year (DOY) time series surface reflectance for Landsat data (Zhu et al.,
2012; Zhu and Woodcock, 2014). In this study, we utilize the monthly
composite image to simulate the month-of-year (MOY) time series of
the surface area. The sine and cosine models estimate the interannual
seasonal changes and inner-annual trend simultaneously, and these
variations are in accord with the land surface water dynamics. A few
coefficients are required to fit the functions considering the relatively
small number of monthly composites. The generalized reduced gradient
(GRG) solution method (Lasdon et al., 1978) is used to fit the nonlinear
time series model.

= + + +
×

+
×

m a a m m a
N

m

b
N

m

( ) sin 2
12

b cos 2
12

sin 2
12

cos 2
12

GRG 0 1 1 2

2 (3)

where ∆m is the month number of the sequence, N is the number of
years of utilized Sentinel-2 data, a0 is the coefficient for overall values,
a1 and b1 are the coefficients of inner-annual change, and a2 and b2 are
the coefficients of interannual change.

Additionally, a linear regression and the correlation coefficient were
used to evaluate the spatial distribution (in the units of 96 adminis-
trative divisions) of the surface water and the general trend (monthly
change) of the surface water area. The correlation (a value between −1
and +1) is a common numerical measure of the degree of similarity or
linear association between two variables. In this study, the Pearson
correlation coefficient (r) (Eq. (4)) was adopted to measure the con-
sistency of the extent area prediction based on two products. The higher
the positive value is, the more similar between the two results are in the
estimation of the surface water area.

= =

= =

r
p p r r

p p r r

( )( )

( ) ( )
d d d

d d d d

0
96

0
96 2

0
96 2 (4)

where d is the administrative division in France, and pd and rd are the
surface water areas within the division estimated by our SWDF product
and previous products (GSW and OSO), respectively.

2.5.2. National scale datasets
Two HR satellite derived water masks and some official datasets at

the national scale are available to evaluate the SWDF results.
JRC GSW used 3,865,618 scenes (till now) from Landsat 5, 7, and 8

to quantify global water body dynamics from March 1984 to December
2018, at a 30-m spatial resolution, with an overall accuracy over 90%.
GSW is currently the only product providing monthly dynamic data for
inland surface water at a spatial resolution of several decameters. Thus,
a detailed comparison of the monthly dynamics and annual surface

water map in 2017 and 2018 from GSW and SWDF is conducted in this
project.

The French Theia Land Data Centre has set up a Scientific Expertise
Centre OSO (“Occupation des sols” in French) group, and the aim is to
produce a land cover map of France using Sentinel-2 images. The OSO
product is updated once a year, with the inland surface water extent at
a 10-m resolution; the annual surface water extent from 2016 to 2018
has been released (Inglada et al., 2017). The overall accuracy of land
classification is approximately 90%, and the F-score for the surface
water is approximately 0.99. The consistency of annual water maps in
2017 and 2018 from SWDF and OSO are compared by using a confusion
matrix and correlation analysis.

The national hydrological surface of the BD Carthage database
provided by IGN, the French National Institute of Geography, drew the
surface water extent in 2016. BD Carthage is used to evaluate the
maximum annual water extents in 2017 and 2018 in the SWDF product
using confusion matrix-based metrics. However, the different years
between BD Carthage and SWDF mean that the surface water may vary
in terms spatial distribution.

Other hydrological datasets are also used to evaluate the extraction
rates (τ) of the main rivers and lakes in the SWDF annual surface water
maps (Fig. 5). The watercourses of the major rivers in Europe, with a
catchment area larger than 5000 km2, released by European Environ-
mental Agency, and the surface extents of the main lakes and reservoirs
published by Système d'Information sur l'Eau (SIE) are used as the re-
ference maps.

2.5.3. Local scale datasets
Three local approaches have been carried out. The first approach

corresponds to the analysis of 200 samples points' analysis, the second
approach compares the monthly surface water dynamics with a detailed
Sentinel-2 time series over the two major reservoirs of Lake Der-
Chantecoq and Lake Orient (Fig. 5), and the third approach considers a
large number of ponds in the Sologne region of the Loir-et-Cher De-
partment. The detailed information and vector datasets of the sample
points and these two reservoirs are provided in the Supplemental ma-
terials (S.3) and attached Data files.

To validate the monthly time series of surface water dynamics, we
estimated confusion matrices based on 200 sample points (green points
in Fig. 5), which were selected from a stratified random sampling de-
sign using water/non-water strata and monthly time series of Sentinel-2
composite images. A pixel could alternate among water, non-water and
no-data over the time series, and a careful visual interpretation is likely
the most stable approach other than long-term field work. The accuracy
of the surface water time series was described by summarizing the data
in a confusion matrix and estimating the normalized coefficients (Eq.
(1)) of water/non-water samples across France.

The reservoirs, Lake Der-Chantecoq, 48 km2, and Lake Orient,
23 km2, (enlarged views in Fig. 5) are the largest and third-largest ar-
tificial lakes in France, respectively. The Lake Der-Chantecoq and Lake
Orient reservoirs are designed to protect Paris from floods by holding
the water of the Marne River and Seine River, respectively. These re-
servoirs are fully controlled; infilling occurs from November to June,
and at that time, water is taken from the Marne River (for Lake Der-
Chantecoq) and the Seine (Lake Orient). From July to October, water is
released from the reservoirs for flow replenishment of the rivers. Sur-
face water changes dramatically during the year, reducing by half of the
original extent from the high to low period for Lake Der-Chantecoq and
reducing to a fourth of the original extent for Lake Orient. During the
period of March 2017 to February 2019, 46 and 49 Sentinel-2 images
were selected over Lake Der-Chantecoq and Lake Orient, respectively.
One Landsat-8 image acquired on December 7, 2017, is used because of
no clear Sentinel-2 image is available. We generated the reference data
of these two lakes using an SVM classification approach and an on-
screen quality check.

Additionally, the Sologne region, which is a wet and relatively wild
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area located in the southern portion of Loir-et-Cher Department, is
characterized by a large number of ponds, with a total of approximately
3200 pounds, for a total surface area of 12,000 ha. These ponds cor-
respond to small water bodies, where only 50 water bodies reach an
area of 50 ha and the largest pond has an area of 180 ha. The reference
dataset for these ponds released by the Departmental Direction of the
Territories (DDT) is used to evaluate the accuracy of the proposed ap-
proach for small water body detection using the confusion matrix.

3. Results

3.1. Monthly and quarterly dynamics of the surface water extent

The development of a consistent and automated RBSP workflow
enables us to generate a national-scale SWDF product (vector format
products are attached in the Supplemental materials and Data files). We
generate the spatiotemporal dynamics of inland surface water bodies
using monthly composite images extending from March 2017 to
February 2019. Fig. 6 displays the land surface water extent in France
in February 2019. The detailed results include the urban areas in Bor-
deaux, the natural environment of forest and farmland near Paris and in

Loir-et-Cher, and the mountainous area by the Alps. Correspondingly,
the land surface water bodies involve the Garonne River, which runs
through Bordeaux; the Seine River, which flows through natural areas;
small water bodies, such as ponds, that are surrounded by farmlands;
and Lake Annecy, which is located in alpine area with terrain shadow
and snow. These different types of water bodies and backgrounds re-
flect the robustness of the RBSP and the effectiveness of the SWDF
analysis method.

As the only two available products recording the monthly variation
in surface water extent, SWDF and GSW are compared in terms of the
aspect of area predictions. We construct two MOY time series models
based on the monthly surface water area calculated in the SWDF (at the
annual scale) and GSW (between March and October) products, and
then, we evaluate the predicted trends based on sine and cosine fitting
(Fig. 7). Both products exhibit similar seasonal trends, and the corre-
lation coefficient of the variation is 0.940. However, SWDF provides
more of the larger surface water area than GSW, and this average in-
crease of approximately 35,000 ha is related to the gain of the spatial
resolution from the 30 m of Landsat image to the 10 m of Senitnel-2
image.

The SWDF products describe the monthly variation based on the

Fig. 5. Reference data used to evaluate the water body maps, which involve the publicly released datasets (main rivers and lakes, and ponds in Loir-et-Cher) and a
detailed monitoring analysis (Lake Der-Chantecoq and Lake Orient, as well as 200 sample points)
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monthly composite data. In fact, quarterly variation can be generated if
using quarterly composite data, which have also been provided in the
attached Data as well. The area surface water extent in four seasons is
estimated as well (Fig. 8). The results indicate a general seasonality of
dry autumn and wet winter. During the winter of 2017–2018 (Fig. 8),
particularly in January 2018 (Fig. 7), France witnessed an intense
episode of flooding with several successive flood waves. The highest
values of SWDF MOY are related to this long flood period.

To illustrate the temporal resolution of SWDF, we focused on a
detailed example (Fig. 9) of mapped surface water in the southern
coastal areas covering parts of the Camargue Regional Nature Park, the
Pond of Vaccarès, and the lower courses of the Rhône River and the
Pond of Berre, which is largest salt water lake in France, within the
department of Bouches-du-Rhône, at the monthly time scale. The MOY
surface water area estimated from SWDF and GSW is also fitted with the
sine and cosine functions (Eq. (4)). The result displays dramatic sea-
sonal behavior (Fig. 9). In general, the monthly time series trend fea-
tures the transition from dry summers beginning as early as June to wet
winters beginning in October, which is in accord with the Mediterra-
nean climate characteristics. In addition, there are only two months
(May 2017 and Nov. 2018) that are extremely affected by clouds in
SWDF over the 24 MOYs. The detailed monthly changes and corre-
sponding false color composite images are provided in Figure S1and
Fig. S2 (in the Supplemental materials S.4).

Here, at a more detailed scale, an example of lake dynamics across
Lake Der-Chantecoq and Lake Orient in 2017 and 2018 from the
quarterly maps is shown (Fig. 10). The surface water extent displays
seasonal variations according to the quarterly time series analysis.
Compared to the monthly variation in Fig. 11, the quarterly maps are
more robust because clear images are generally available for the whole
of France during the quarterly time span. Nevertheless, the greater
accuracy of the spatial distribution reduces the temporal variation. For
example, the changes between December and February (within the
period of winter) and between September and October (within the
period of autumn) are noteworthy; yet, the quarterly map cannot cap-
ture these monthly changes. In the monthly product (Fig. 11), Lake Der-
Chantecoq is completely filled from December to February, and Lake
Orient ran dry during the September and October. The quarterly pro-
duct (Fig. 10) only displays the dry situation in autumn and the wa-
terlogged state in winter. The correlation between the SWDF monthly
time series products and the reference maps is 0.946 for Lake Der-
Chantecoq and 0.892 for Lake Orient. That is, the monthly map can
monitor the variation at higher temporal resolution with an acceptable

extraction accuracy. In addition, the dramatically smallest surfaces'
period occurs between November to February, which cannot be re-
flected in the GSW product owing to the data deficiency.

Additionally, 200 sample points are marked as water bodies, non-
water bodies and no data by visual interpretation based on the re-
ference monthly composite images. In total, 4800 sample points over
24 months were obtained with two dimensions (“actual” by manual
judgment and “predicted” by the RBSP method). The overall confusion
matrix is presented in Table 7 after excluding 840 no-data sample
points (Table S3 shows the monthly confusion matrix in the Supple-
mental materials). The ACC and MCC for the general products within a
two-year period are 0.932 and 0.865, respectively. Owing to the wet
winter season in November and December, the results during these two
months present relatively low accuracy; the ACC and MCC values are
approximately 0.87 and 0.75, respectively.

3.2. Water frequency and annual surface extent

The annual frequency of surface water, expressed as a value from 0
to 100%, reflects the number of times a pixel is flagged as water over
the total number of cloud-free monthly compositions during the year.
Fig. 12 displays the annual frequency of surface water in 2018. The
satellite-based frequency of water bodies can be decreased by many
factors, including the clouds (omitted by the cloud-screening algo-
rithm), geometric mismatch and artifacts over certain areas (Zou et al.,
2018). In the project, an annual frequency of no lower than 70% is
regarded as a satellite-based permanent water body. Frequencies be-
tween 20% and 70% can be regarded as seasonal water bodies, where
have water some time in a year. An annual frequency of no higher than

Fig. 6. Surface water extent using monthly composite data during February 2019 (A) in France and several details over different environment/landscape units,
including (B) urban, (C) agricultural, (D) mountainous and (E) forest areas.

Fig. 7. Tendency of national MOY surface water area variations estimated from the SWDF and GSW products. The crossing points indicate the monthly surface water
area of France, and the curves present the fitted seasonal trend by using harmonic model. GSW provides the surface water maps between March and October.

Fig. 8. Surface water area of France in four seasons estimated in SWDF product.
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20% indicates that the pixels are marked as water bodies during one or
two months of the year. These pixels could be the noise from cloud
shadows and inundation zones, which are somewhat mixed in the an-
nual frequency map and need further consideration.

In the project, we generated water body maps in 2017 and 2018
based on the frequency map. The minimum water extent covering the
permanent water bodies was 308,374 ha and 313,808 ha in 2017 and
2018, respectively, while the maximum water extent, including the
permanent and seasonal water bodies, was approximately 421,857 ha
and 414,449 ha in 2017 and 2018, respectively. Table 8 listed the
surface water area estimated from different HR derived products and
the hydrological BD Cartage dataset.

These permanent and maximum surface water maps were quanti-
tatively compared with the HR satellite derived annual maps from 2017
and 2018 (Table 9). The confusion matrix was calculated to determine
the degree of consistency of the surface water extents predicted by the
different products. TP and TN denote the same extracted regions of
water bodies and non-water bodies, and FP and FN denote the omission
in one product and commission in another product. Additionally, cor-
relation analysis is performed based on the surface water areas in 96
administrative divisions. The coefficient of determination (R2) (Fig. 13)
of linear regression is found to be approximately 0.98 for GSW and 0.80
on average for OSO compared with SWDF. The Pearson correlation
coefficient (r) between the SWDF and GSW methods is approximately
0.99 on average. In general, the SWDF and GSW approaches display a
high degree of consistency in both area-based correlation analysis and
region-based confusion matrix aspects, perhaps due to their similar
solutions based on the annual percentage of pixels.

Also, the SWDF annual products are evaluated using the BD
Carthage hydrological database obtained in 2016. The confusion ma-
trix-based metrics were 0.617 (PA), 0.801 (UA), 0.995 (ACC) and 0.700
(MCC) on average for the maximum extent and 0.611 (PA), 0.842 (UA),
0.996 (ACC) and 0.715 (MCC) for permanent water bodies. The relative
high UA means that SWDF soundly overcomes the error extraction of
water bodies soundly. That is, the noise is effectively excluded based on
the water occurrence analysis. The low PA means that the SWDF faces
greater challenges in detecting the missing parts of the surface water
bodies. However, the hydrological data were obtained before 2016 and

thus the dissimilarity cannot be avoided between the different temporal
data.

Furthermore, the extraction rates (Fig. 14) of the main rivers and
main lakes are 0.929 and 0.802 in the annual water map of 2018, re-
spectively. Further, the extraction of small water bodies is analyzed
based on a large number of ponds spreading across Loir-et-Cher. The
confusion matrix analysis of these small water bodies (Fig. 15A) in-
dicates that PA, UA, ACC and MCC are 0.683, 0.882, 0.995 and 0.774,
respectively. These metrics for the GSW method (Fig. 15B) are 0.498,
0.865, 0.993, and 0.653. Both products predict a similar degree of
correctness of approximately 90% and commission errors of approxi-
mately 10%; however, they face problems with small water bodies re-
lated to low completeness and high omission errors. The SWDF method
at a 10-m spatial resolution has a higher extraction rate for small water
bodies and ponds in Loir-et-Cher than does the GSW method at a 30-m
spatial resolution. The reference data include 2498 ponds larger than
1 ha and a total area of 8286 ha (Fig. 15C). SWDF detects 1900, 2498
and 2779 ponds larger than 1 ha, 0.6 ha and 0.5 ha, respectively. GSW
detects 1265, 2100 and 2498 ponds larger than 1 ha, 0.5 ha and 0.3 ha,
respectively. The detailed illustration in Fig. 15 indicates that the
boundaries of the ponds are subject to extremely omission phenomena
(redaa color), especially for GSW, which are mainly caused by the ve-
getation and vegetation shadows. This kind of omission error reduces
the surface water area for each pond. In addition, GSW includes ap-
proximately 2000 ponds between 0.2 ha and 0.5 ha, which are gen-
erally sparse noise owing to the pixelwise mapping. The official data-
base of the surface water extent faces the problem of the temporal
changes, which would reduce its reliability in measuring SWDF dy-
namic products.

4. Discussion and perspectives

Monthly time series monitoring of surface water bodies at a 10-m
resolution was performed for France between March 2017 and February
2019. The SWDF results indicate that Sentinel-2 data can provide
higher temporal and spatial resolution information compared with the
existing surface water extent products. The proposed RBSP approach
tested here allows the frequent updating of the product based on a

Fig. 9. Monthly time series changes in a part of the southern coastal area. (A) Monthly time series estimation of the surface water area in the study area SWDF, GSW
and fitted models. (B) & (C) are two monthly maps provided by SWDF. (D–G) display two zoom-in regions, where the surface water extents (yellow lines) overlay the
Sentinel-2 monthly composite image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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newly available Sentinel-2 monthly composite image. However, the
proposed approach can be further improved to obtain more accurate
and complete products, including the commission error of moist soil,
the omission error of streams, creeks and frozen water bodies, and the
data deficient because of cloud cover.

4.1. Error sources and potential improvements

Clouds and cloud shadows can cause both the omission error
(Fig. 16A) and commission errors (Fig. 16D), and they reduce the
coverage of valid observations, especially during the wet winter in
France. In this study, we utilized the Sentinel-2 QA60 band to mask
clouds in images with cloud cover percentages of< 20%. The low cloud
cover threshold does not affect the proposed RBSP approach. However,
the coverage of the SWDF product could be further improved if an
enhanced cloud and cloud shadow algorithm are available and in-
troduced in the preprocessing stage. Recently, the Fmask 4.0 algorithm
(Qiu et al., 2019), which robustly detected clouds and cloud shadows in
Landsat data, was introduced into Sentinel-2. This enhanced masking
algorithm is expected to (i) filter the clear pixels to restrain the com-
mission error and (ii) add experimental data with a loose cloud cover
flag to obtain a higher coverage of monthly surface water maps.

Wet soil regions distributed in farmland (through irrigation) and
wetland areas are somewhat misclassified as surface water bodies based

on the rules of spectral indices (Fig. 16E). The division of surface water,
dry land and wet land is important for monitoring the inner-annual
changes in intermittent rivers and ephemeral streams. Thus, some po-
tential ideas involve the synergistically use of Sentinel-1 SAR data
(Bousbih et al., 2018) and Landsat 8 thermal information (Sadeghi
et al., 2017).

RBSP typically faces omission error issues along narrow rivers
(Fig. 16B) because of 10 m spatial resolution and the use of superpixel
technique, especially when areas are sheltered by vegetation. It is im-
portant to restore the completeness of the watercourse in these cases.
Potential development steps could be considered to restore rivers from
fracture effects by (i) using prior knowledge and GIS data to obtain map
layers over time and limit projection distortion, (ii) implementing
salient object detection approaches and perceptual organization tech-
niques to address the computational efficiency, and (iii) performing
spectral mixture analysis to extract the endmembers of different en-
vironments.

RBSP regarded ice as the other type of land cover and excluded it
from surface water maps in the current project. That is, RBSP would
underestimate surface water in winter because the water bodies are
frozen (Fig. 16C). For the SWDF product, ice is mostly limited to
mountainous lakes and hydropower reservoirs in the Alps and Pyrenees
areas, which represent a very small percentage of water bodies. The
monitoring of inland river and lake ice indicates significant

Fig. 10. Quarterly time series changes in the surface water extent of Lake Der-Chantecoq and Lake Orient. The yellow lines display the surface water extents provided
by SWDF. The background corresponds to the quarterly median composite data based on Sentinel-2 images. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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environment and climate changes (Yang et al., 2020). The detection of a
surface water body can provide the basic layer for further inland ice
detection and estimate the percentages and frequencies of the river and
lake ice.

In brief, the SWDF method may overestimate the number of water
bodies in locations that contain moist soil and shaded pixels and un-
derestimate the extent of water bodies such as streams, creeks and
frozen water bodies. Commission error exists in the monthly time series
maps but can be effectively excluded from the annual water maps based
on frequency calculations. Such accelerated error reduces the accuracy

Fig. 11. Monthly time series changes in Lake Der-Chantecoq and Lake Orient. The curves (C) display the monthly surface water area estimated by SWDF and the
reference values. A, B, D and E are surface water extents (yellow lines) overlaying on Sentinel-2 images. These monthly variations, including A and B in winter and D
and E in autumn, cannot be reflected by quarterly maps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 7
Accuracy assessment of sample points.

840 points: no data available
3960 points: valid MOYs

Actual reference by visual interpretation

Water Non-water

Predicted SWDF
by the RBSP method

Water 1589 61
Non-water 207 2103

PA = 0.885; UA = 0.963; ACC = 0.932; MCC = 0.865.
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Fig. 12. Annual surface water occurrence map in 2018 generated by calculating the frequency of pixels marked as water bodies in the monthly maps. (A) France, (B)
Lake Orient, and (C) Lake Der-Chantecoq. Note: The gap inside the Lake Der-Chantecoq is from the separate processing of the two divisions (Marne and Haute-
Marne).

Table 8
Surface water area in France estimated from different products.

Surface water area (ha) SWDF GSW OSO BD cartage in 2016

Permanent Maximum Permanent Maximum Maximum Permanent Maximum

2017 308,374 421,857 277,959 394,297 541,912 428,401 543,319
2018 313,808 414,449 287,551 402,313 540,353
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of the SWDF flood mapping results because bi-temporal maps are ap-
plied before and after flooding. Fortunately, these errors are mainly
specific to the monthly maps. The quarterly and annual surface water

maps appear to be more robust than the monthly maps based on the
high quality of quarterly composite images and annual frequency cal-
culations.

Table 9
Comparison of the annual surface water maximum and permanent extent provided by three satellite derived products and a hydrological database.

(2017/2018) SWDF vs OSO SWDF vs GSW OSO vs GSW SWDF vs BD cartage

Maximum extent r 0.952/0.838 0.991/0.989 0.946/0.856 0.915/0.914
ACC 0.996/0.995 0.997/0.997 0.995/0.994 0.995/0.995
MCC 0.750/0.700 0.779/0.776 0.740/0.687 0.698/0.702

Permanent ACC Not available 0.997/0.997 Not available 0.996/0.996
MCC Not available 0.757/0.759 Not available 0.721/0.710

Fig. 13. Correlation analysis of the annual surface water maximum extent between the SWDF and GSW/OSO methods based on the surface water areas in 96
administrative divisions in (A) 2017 and (B) 2018.

Fig. 14. Evaluation of the extraction rate of main riverway and lake extents in 2018. (B) (C) and (D) are some zoom-in details in different geological regions of
France, which are located in Paris Basin, mountainous Alps and Mediterranean coastal area, respectively.
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4.2. Data accessibility and homogeneity of S2 and Landsat

To our knowledge, until now, JRC GSW is the only available product
that provides the monthly dynamics of inland surface water bodies.
However, GSW could be unavailable in certain months at certain lo-
cations. For France, GSW provides the monthly dynamics between
March and October, as shown in Fig. 7.

Fig. 17 compares the percentage of areas with valid observations in
France using Sentinel-2, Landsat 8 and GSW data (synthetic use of
Landsat 7 and 8). With a high revisit frequency, Sentinel-2 (85% on
average) can provide more available valid data than Landsat 8 (49% on
average) and even GSW (60% on average). When limited to March
through October in the dry season, the available percentage of the area
is similar between the obtained product and the JRC dataset (ap-
proximately 90% on average), and the valid area decreases to 58% on
average if only Landsat 8 is utilized. For the quarterly maps, Sentinel-2
provides 99.5% coverage, on average, in France, and Landsat 8 covers
85.6% of the entire national area on average. The SWDF method can
provide the complete seasonal dynamic changes in the inland surface
water extent, although the MOY time series analysis requires further
improvement to obtain complete coverage, perhaps by introducing
advanced cloud mask algorithms to include more images with
CLOUDY_PIXEL_PERCENTAGE flags or by homogeneously merging
Landsat and Sentinel-2 data. Figs. 3 and 18 present the valid MOY maps
in a two-year period using Sentinel-2, Landsat 8 and Sentinel-2 and
Landsat 8 combined. Our future work will involve the homogeneous
merging of the Landsat and Sentinel-2 datasets, especially considering
the recently published Landsat Analysis-ready Data (ARD) products and
upcoming Landsat 9 scheduled for launch in December 2020.

5. Conclusion

We develop an automated inland surface water detection approach
and release a national surface water dynamics product. To the best of
our knowledge, this study is the first to monitor the monthly dynamics
of the surface water extent at a 10-m resolution over a large-scale using
Sentinel-2 imagery. The RBSP algorithm runs automatically to delineate
surface water bodies in different environments (such as urban scenes,
agricultural fields, and mountainous areas). The SWDF product de-
termines the water occurrence in France at monthly time steps and at a
10-m spatial resolution. The geography of France includes coastline
areas, mountainous areas, plains, islands and metropolises. Thus, the
RBSP approach is intuitively implemented in GEE and has the potential
to generate surface water dynamics at other national scopes and even
the global scope.

The obtained SWDF product is evaluated and validated based on
both the HR satellite image derived water maps and official datasets.
The annual surface water maps of SWDF show consistency with the
publicly released land surface water maps of the JRC GSW, OSO and BD
Cartage based on both the spatial distribution and surface area. These
products display a high correlation coefficient of over 0.950 for surface
water area prediction and high overall accuracies of over 0.995 (ACC)
and approximately 0.750 (MCC) based on confusion matrix analysis.
Moreover, the MOY SWDF and GSW products exhibit a similar seasonal
trend, with a correlation coefficient of 0.940. The SWDF results cover
all 24 months in the two-year period, but the GSW method excludes
results for the winter seasons from November to February. Additionally,
the SWDF method has a higher extraction rate than the GSWmethod for
small water bodies due to its higher spatial resolution of 10 m. For

Fig. 15. Evaluation maps of pond extraction in Loir-et-Cher based on the (A) SWDF and (B) GSW products. (C) displays the statistics of the number of ponds in
different size.
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example, the completeness of pond extractions in Loir-et-Cher is 0.683
(SWDF) and 0.498 (GSW) using the two methods, respectively.
Moreover, the randomly sampled points show that the monthly water
dynamics of SWDF have overall accuracies of 0.932 (ACC) and 0.865
(MCC). The detailed monitoring analysis of Lake Der-Chantecoq and
Lake Orient indicates the superiority of MOY compared with conven-
tional seasonal analysis on subtle variation monitoring.

Our ongoing work is dedicated to improving the RBSP approach and
the general application of the SWDF product. The automatic RBSP ap-
proach overestimates the SWDF in wet soil and shadow areas and un-
derestimates the areas of water bodies such as rivers, streams and
frozen water bodies. An advanced cloud masking algorithm and soil
moisture estimation method could be implemented to reduce the
commission error. A salient edge detection approach will be considered
to address the omission of river fractures. The monitoring of percentage
and frequency of river and lake ice is an interesting topic to be explored
in our ongoing work.

Overall, the SWDF results provide a unique opportunity for the
monthly continuous mapping of the surface water extent at a 10-m scale
using time series of composite images. Such monthly continuous time
series of surface water dynamics benefit in-depth research on the inner-
annual spatiotemporal variability in surface water changes, such as for
ephemeral stream and lake monitoring, seasonal variation assessment
and inundation mapping. Currently, SWDF has a valid coverage of 85%
for the monthly maps and 99.5% for the quarterly maps on average. The

valid coverage can be further improved if an enhance cloud and cloud
shadow detection algorithm is introduced and a high cloud cover flag is
used. Additionally, the homogeneous use of Sentinel-2 and Landsat 8
could further increase the valid coverage of the SWDF product.

CRediT authorship contribution statement

Xiucheng Yang:Conceptualization, Methodology, Software,
Validation, Investigation, Writing - original draft.Qiming
Qin:Funding acquisition, Writing - review & editing.Hervé
Yésou:Resources, Writing - review & editing.Thomas
Ledauphin:Resources, Investigation.Mathieu Koehl:Supervision,
Writing - review & editing.Pierre Grussenmeyer:Supervision,
Writing - review & editing.Zhe Zhu:Formal analysis, Writing - re-
view & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Fig. 17. The percentage of the monthly composite data coverage from Sentinel-2, Landsat 8 and the combined use of Landsat 7 and Landsat 8.
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