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A new change detection algorithm for continuous monitoring of forest disturbance at high temporal frequen-
cy is developed. Using all available Landsat 7 images in two years, time series models consisting of sines and
cosines are estimated for each pixel for each spectral band. Dropping the coefficients that capture inter-
annual change, time series models can predict surface reflectance for pixels at any location and any date as-
suming persistence of land cover. The Continuous Monitoring of Forest Disturbance Algorithm (CMFDA) flags
forest disturbance by differencing the predicted and observed Landsat images. Two algorithms (single-date
and multi-date differencing) were tested for detecting forest disturbance at a Savannah River site. The map
derived from the multi-date differencing algorithm was chosen as the final CMFDA result, due to its higher
spatial and temporal accuracies. It determines a disturbance pixel by the number of times “change” is ob-
served consecutively. Pixels showing “change” for one or two times are flagged as “probable change”. If the
pixel is flagged for the third time, the pixel is determined to have changed. The accuracy assessment
shows that CMFDA results were accurate for detecting forest disturbance, with both producer's and user's
accuracies higher than 95% in the spatial domain and temporal accuracy of approximately 94%.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

The 39 years of data in the Landsat archive comprise the most valu-
able dataset available for understanding land cover change, such as de-
forestation, urban growth, agriculture expansion, and wetland loss
(Coiner, 1980; Coppin & Bauer, 1994; Cohen et al., 1998; Jensen et al.,
1995; Masek et al., 2008; Seto et al., 2002). Due to the large amount of
carbon stored in forests, monitoring forest change is of great impor-
tance for understanding the global carbon budget. Knowing where
and when forest disturbance happens is crucial for forest management
and carbon cycle modeling. Numerous forest change detection algo-
rithms have been developed, validated, and applied to different parts
of the world (see for example Collins & Woodcock, 1996; GarcÍa-Haro
et al., 2001; Goodwin et al., 2008; Hayes & Sader, 2001; Healey et al.,
2005; Healey et al., 2006; Hilker et al., 2009; Hostert et al., 2003;
Huang et al., 2010; Kennedy et al., 2007; Kennedy et al., 2010; Masek
et al., 2008; Vogelmann et al., 2009; Woodcock et al., 2001).

Most of the change detection algorithms are based on two dates of
Landsat images (see for example Collins & Woodcock, 1996; Healey et
al., 2005; Healey et al., 2006; Masek et al., 2008; Woodcock et al.,
2001). These algorithms are simple to use, but not always applicable.
One problem is that both images have to be at the same time of year
tominimize phenology differences and Bidirectional Reflectance Distri-
bution Function (BRDF) effects. The other problem is that the input
rights reserved.
images need to be cloud and snow free. Even under these conditions,
these change detection algorithms can only provide the spatial pattern
of the disturbance that occurred between the two images and it is im-
possible to know when the change occurred in the time between the
two images. This is important because the time period between images
is frequently as much as five or ten years.

Based on the idea that forest change can be better detected using
many observations of a place and the increasing need for detecting
changes as they are occurring, a number of methods for change detec-
tion using many dates of Landsat imagery have been developed
(Goodwin et al., 2008; Hilker et al., 2009; Hostert et al., 2003;
Huang et al., 2010; Kennedy et al., 2007; Kennedy et al., 2010;
Vogelmann et al., 2009). These algorithms have been shown to be
more automatic in identifying forest change and more robust to
noise from registration, BRDF, and seasonal effects.

Nevertheless, these newly developed algorithms still have limitations
in image selection, as all the images used should be within the growing
season to minimize phenology and BRDF differences and at the same
time they should be almost cloud and snow free to make multi-
temporal image differencing possible. Though some new indices such
as the Integrated Forest Z-score (IFZ) (Huang et al., 2010) and Distur-
bance Index (DI) (Healey et al., 2005; Healey et al., 2006; Masek et al.,
2008) can reduce phenology and BRDF effects by normalizing the indices
with a predefined forest sample, they may have problems when han-
dling data from different seasons or within heterogeneous areas where
both deciduous and evergreen forests exist. Therefore, cloud and snow
free Landsat images from three of the seasons will not be able to be
used. Sometimes images acquired during times other than the growing
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season, such as winter images, can be more useful than growing season
images for detecting subtle disturbance (pest infestation) when the for-
est understories are dense during the growing season, which makes the
mixed signal almost the same as healthy forest (Bolton & Woodcock,
in preparation). Some studies even found that snow-covered Landsat
imagery can be used for change detection, often allowing for a longer
period of observed changes than the growing season (Takao, 2003).
Due to the requirement for cloud and snow free images acquired during
the growing season, most of the multi-temporal change detection
algorithms can only provide annual or biennial change results.

Recently, Hilker et al. (2009) used both Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and Landsat to detect forest distur-
bance in Canada. By blending MODIS and Landsat data, a high
temporal frequency (16 days) and fine spatial resolution (30 m) distur-
bance map was produced. Though this algorithm can identify the time
of forest disturbance at a high frequency, it may take a long time to ac-
quire two clear Landsat images for MODIS and Landsat data blending. If
we want to monitor immediate problems such as illegal logging or en-
croachment on protected area, we need an algorithm that can monitor
changes as they are occurring (within a fewweeks) and can update the
change results as soon as a new observation is available.

Because of the limitations of existing algorithms for fully tapping
the Landsat archive, we developed the Continuous Monitoring of For-
est Disturbance Algorithm (CMFDA), which uses all available Landsat
images to characterize forest disturbance. CMFDA considers each
pixel separately, taking advantage of any clear views for each pixel
to track spectral trends over time. In this study we are only focusing
on human-induced forest disturbance (forest clear-cut/thinning),
though CMFDA may be able to identify other natural-induced forest
disturbances that cause surface reflectance to deviate from expected
values. CMFDA produces a map showing where and when the distur-
bance happens at high spatial resolution (30 m) and temporal fre-
quency (a few weeks). Currently, the highest temporal frequency
for CMFDA is 8 days when both Landsat 5 and Landsat 7 are used.
Clouds and cloud shadows are flagged as part of the procedure. The
following steps are necessary to implement and test CMFDA:

1. A two-step cloud, cloud shadow, and snow masking approach.
2. Estimate time series models of surface reflectance.
3. Define a stable forest mask
4. Predict the “next” clear observations to serve as a basis for compar-

ison with new observations.
5. Detect forest disturbance with the single-date and multi-date

differencing algorithms
6. Test the disturbance map derived from the algorithms against an

independently-derived reference map.

2. Study area and data

The study area (Fig. 1) is located in the Savannah River Basin cov-
ering 2000×2000 Landsat pixels (60×60 km). The Savannah River is
along the border between Georgia and South Carolina. There is a va-
riety of land covers in this study area. Along the Savannah River,
there is a large area of deciduous forest and wetland. Most of this
study area is covered by evergreen forest and agriculture. Three
urban areas (Sylvania, Allendale, and Estill) along the Savannah
River are within the study area. Though there is no snow present in
this study area, it is frequently cloudy. By applying a newly developed
cloud and cloud shadow detection algorithm called Fmask (Function
of mask) (Zhu & Woodcock, 2012) to all available Landsat ETM+ im-
ages (Path 17 and Row 37) from 2001 to 2002 (Fig. 2), the expected
frequency of cloudy observations for each pixel was approximately
50% and almost all the cloud free images were acquired at the begin-
ning or end of the year (Fig. 3). The cloud cover during the growing
season was always heavy. There was not a single cloud free ETM+
image during the growing season for either 2001 or 2002.
We used a time series of Landsat Thematic Mapper (TM) and En-
hanced Thematic Mapper Plus (ETM+) images for Path 17 and Row
37. All available ETM+ L1T images (a total of 64) acquired from
2001 to 2004 were downloaded if the cloud cover was less than
90%. Because the year 2003 was the time that CMFDA was applied
to find disturbances and also the year when Scan Line Corrector failed
in Landsat 7, all available TM L1T images (a total of 12) acquired in
2003 were downloaded if cloud cover was less than 90% to help
find the disturbance time with higher frequency.

3. Methods

CMFDA has many component parts, including: image preproces-
sing; single-date masking of clouds, cloud shadows, and snow;
multi-temporal masking of clouds, cloud shadows, and snow; estima-
tion of surface reflectance models; mapping of stable forest; predict-
ing the “next” Landsat observations, and identification of forest
disturbance (Fig. 4).

3.1. Preprocessing

Geometric registration and radiometric normalization are impor-
tant steps in change detection, facilitating comparison of change indi-
ces across time and space. We assume Landsat L1T images are already
precisely registered and sub-pixel misregistration will not influence
our analysis. All the Landsat images were atmospheric corrected
with the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS), using the 6S radiative transfer approach (Masek et al.,
2006; Vermote et al., 1997).

3.2. Cloud, cloud shadow, and snow masking

Clouds, cloud shadows, and snow are noise in the data and their
detection is the first step in the analysis (Arvidson et al., 2001; Irish,
2000; Simpson & Stitt, 1998). The brightening effect of clouds or
snow and the darkening effect of cloud shadows can be confused
with land cover change if they are not screened. Historically, esti-
mates of cloud cover in Landsat data have been provided by the Auto-
matic Cloud Cover Assessment (ACCA) system (Irish, 2000; Irish et al.,
2006). It works well for estimating the overall percentage of clouds in
each Landsat scene. However, it does not provide sufficiently precise
location and boundaries of clouds and their shadows to support auto-
mated analysis of a time series of Landsat data to find change.

A two-step cloud, cloud shadow, and snow masking algorithm has
been developed that provides the levels of accuracy we need. The first
step (Fmask) uses a newly developed algorithm that processes each
Landsat scene individually. The second step builds on the results of
the first step and identifies cloud, cloud shadow and snow based on a
time series of Top Of Atmosphere (TOA) reflectances of each pixel
(Zhu et al., in preparation). Though the first step is a significant im-
provement over ACCA, it is not perfect, as it applies the same scene-
based probability threshold for all the pixels in the scene. The second
step further improves the cloud, cloud shadow, and snow masking
using the additional temporal information. Since the first step can
screen most of the cloud, cloud shadow, and snow pixels, in the second
step, amodel consisting of sines and cosines is fit for each pixel using all
remaining clear observations. The Robust Iteratively Reweighted Least
Squares (RIRLS) method is applied to reduce the influence of outliers
during the fitting (DuMouchel & O'Brien, 1989; Holland & Welsch,
1977; O'Leary, 1990; Street et al., 1988). The outliers (missed clouds,
cloud shadows, and snow) are easily recognized by comparing the actu-
al observations and the model predicted values.

The two-step cloud masking results are illustrated in Fig. 5. The
Image on the left is the original Landsat image. The images in the cen-
ter and on the right show the semi-transparent cloud/cloud shadow
masks overlaid on the original image. We dilate the clouds and



Fig. 1. Study area (subset of November 23 rd 2002 Landsat ETM+ image shown with Bands 4, 3, and 2 in red, green, and blue).
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shadows by 3 pixels in an attempt to exclude the edges of clouds and
shadows that are often spectrally inseparable from the rest of the
image. Fmask (Fig. 5b) misses a few clouds and cloud shadows (yel-
low arrows). If we examine the time series of clear observations for
two deciduous forest pixels indicated by the yellow arrows, the
missed cloud and cloud shadow pixels would bias a model fit using
Ordinary Least Square (OLS) (green circles), but have little influence
on the RIRLS method (red cycles) (Fig. 6). With the help of the pre-
dicted values, the missed cloud and cloud shadow pixels were easily
detected in the second step (Fig. 5c).
3.3. Estimating the surface reflectance model

After removing observations covered by clouds, cloud shadows,
and snow, CMFDA uses the remaining clear Landsat observations to
estimate surface reflectance models for each pixel based on OLS fit-
ting. At this stage, OLS fitting is used rather than RIRLS simply because
it is faster and any significant outliers have been removed. The surface
reflectance model is a function of sines and cosines shown in Eq. (1).
It includes a two term harmonic (Fourier) model (Davis, 1986;
Rayner, 1971) and an inter-annual change model newly developed



0
0

1

2

3

4

5

6

7

8
x106

5 10 15

Number of cloudy observations for each pixel

N
um

be
r 

of
 p

ix
el

s

20 25 30 35 40 45

Fig. 2. Histogram showing the frequency of cloudy observations from 2001 to 2002 for
all available ETM+ images. There were 46 images from this time period, indicating that
about half of all observations collected were cloudy. Notice that this is not the same as
saying half the images were cloud free.
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here. The two term harmonic model (i=1 and N+1) is used to cap-
ture the seasonality and BRDF effects of the annual surface reflec-
tance. The harmonic model is chosen due to the advantage of
requiring fewer coefficients to estimate (fewer necessary clear obser-
vations) and being less sensitive to short term data variations and in-
herent noise (e. g., missed clouds, cloud shadows, snow, and image
misregistration). The inter-annual change model (i=2, 3, 4…N) is
comprised of sines and cosines that represent variation that occur
on an i-year cycle, which mostly result from land cover change:

f xð Þ ¼ a0 þ
XN
i¼1
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Fig. 3. Cloud cover percent of all available ETM+ images from 2001 to 2002. Notice that d
(meaning zero percent cloud cover).
where,

x Day-of-year.
N Number of years.
T Number of days per year (T=365).
a0 Coefficient represents overall surface reflectance.
ai,bi Coefficients that capture the changes of surface reflectance

for the ith year.
aN+1,bN+1 Coefficients that capture the bimodal variations of sur-

face reflectance for each year.

Two years (2001 and 2002) of Landsat ETM+ images (33 images)
were used to estimate the surface reflectance model for the Savannah
River site. In this case, there are 7 parameters for each surface reflec-
tance model. The last two parameters a3 and b3 are used to capture
the bimodal variations for each year, which mostly occurs in agricul-
tural areas due to an initial period of growth in the spring that is
followed by plowing and a second period of growth. The parameters
a1 and b1 are used to capture the annual change caused by phenology
and BRDF effects. The inter-annual change is captured by the two
parameters a2 and b2. The mean overall surface reflectance for the
two years is represented by a0. To estimate these 7 parameters, at
least 7 clear observations are necessary in two years. To strengthen
the robustness of the fitting, CMFDA only estimates a pixel if the
number of clear observation is more than one and a half times of
the number of total parameters to be estimated, that is a total of 11
clear observations. Considering the 23 observations per year from
Landsat 7 and 23 observations per year from Landsat 5 per year at
this U.S. site, 11 clear observations in two years are easily obtained
even though there were very few cloud free images. In fact, when
only using the ETM+ images, the highest number of cloudy observa-
tions at the pixel level is 28 (Fig. 2), meaning there would be at least
18 clear observations for each pixel between 2001 and 2002.

3.4. Defining a stable forest mask

Some land uses exhibit abrupt changes in surface reflectance that
do not represent land use change. For example, agricultural fields are
plowed, resulting in reflectance changes that do not represent land
use change. To limit our change detection efforts to forests, we
nter WinterSummer

 cover percent
over percent <90%

uring the peak growing season (summer), not a single ETM+ image was “cloud free”
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Fig. 4. Flow chart of Continuous Monitoring of Forest Disturbance Algorithm.
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created a stable forest mask and only assessed these pixels for change.
The stable forest mask was produced automatically using the estimat-
ed coefficients derived from the 33 Landsat ETM+ images acquired
between 2001 and 2002 based on the fact that forests are observed
to have high NDVI values (Masek et al., 2008) and low reflectance
in the SWIR bands (Huang et al., 2010; Kennedy et al., 2007). As com-
pared to Band 5, Band 7 is more robust to different atmosphere con-
ditions, so we chose Band 7 as our SWIR band for extracting forests.
From the previous surface reflectance models we have the overall
surface reflectance represented by a0, i(i=1, 2, 3, 4, 5, and 7),
where i stands for the Landsat TM or ETM+ band number. Therefore,
the overall NDVI values can be calculated with Band 4 and Band 3
overall surface reflectance model coefficients (a0,3 and a0,4) and the
overall Band 7 surface reflectance (a0,7). We define a possible forest
a b

Fig. 5. Illustration of the two-step cloud, cloud shadow, and snow masking results. Fig. 5a sh
blue). Fig. 5b shows the results of the Fmask algorithm. Clouds are yellow and shadows are
cloud and cloud shadow missed in Fig. 5b were found in Fig. 5c.
pixel if it meets the criteria that overall NDVI is larger than 0.6 and
overall Band 7 reflectance is less than 0.1. To better illustrate how
the two thresholds work, we plotted ten samples of the time series
for each land cover class for Band 7 and NDVI (Fig. 7). In Fig. 7, the
overall forest NDVI values are always above 0.6, but sometimes
other vegetation types like crop, grass, and shrub can also have over-
all forest NDVI values above 0.6. As forests are usually dark in SWIR
bands compared to other vegetation types, a threshold of 0.1 in over-
all Band 7 surface reflectance excludes other vegetation types that
may have high NDVI values.

If land cover change occurs within the estimating period
(2001–2002), future use of the resulting model will be problematic.
Therefore, we excluded these pixels that were changed during the es-
timating period from the stable forest mask. As parameters a2 and b2
c

ows a small piece of a Landsat image (shown with Bands 4, 3, and 2 in red, green, and
blue. Fig. 5c shows the results after use of the multi-temporal approach. Notice that the
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capture the inter-annual differences, their amplitude represents the
degree of changes (excluding phenology and BRDF differences) in
surface reflectance within the estimating period. In this study, surface
reflectance parameters computed from Band 7 were used for detect-
ing changes that occurred in the estimating period because of their
robustness to atmospheric influences and sensibility to forest distur-

bance. A threshold for pixels where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22;7 þ b22;7

q
is larger than 0.02

worked well in identifying the pixels that changed during the esti-
mating period. However, if change occurs at the end of the estimating
period, one or two changed observations may not contribute enough

to the inter-annual change parameters, making
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22;7 þ b22;7

q
still less

than 0.02.
As the model cannot capture forest disturbance that happened at

the end of the estimating period, the predicted values from the
model will still have similar values as if no change occurred. In this
case, these disturbed pixels can be easily identified by comparing
the last clear observations with the predicted values (see
Section 4.1.1 for detail). The final stable forest map is created by com-
bining all these criteria above in Eq. (2) and the final stable forest
mask is shown in Fig. 8.

Stable f orestmask ¼ a0;4−a0;3
a0;4−a0;3

> 0:6 and a0;7b0:1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22;7 þ b22;7

q
b0:02

and stable in the last clear observation

ð2Þ

The use of the magnitude of the interannual change parameters
(a2 and b2) to find change represents a new kind of method for find-
ing change retrospectively. Since we are pursuing methods for moni-
toring forest change as it is occurring, we used this approach here
only to find changes during the estimating period so that they won't
be confused with forest change in the testing period.



Fig. 7. Estimated Band 7 and NDVI temporal trajectories of different land cover classes between 2001 and 2002. For each land cover class, ten time series of samples were estimated
for their surface reflectance models.
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3.5. Predicting the “next” Landsat image

Assuming no land cover change has occurred, Eq. (3) is used to
predict the surface reflectance for each pixel and each spectral band
at any time of the year, or the equivalent of the “next” Landsat
image. The parameters were previously estimated using Eq. (1)
based on images between 2001 and 2002. Removing the inter-
annual change parameters, the rest of the variables capture all kinds
of influences including phenology, BRDF, topographic shadowing,
etc. A Landsat image at any date can be predicted as:

predict xð Þ ¼ a0 þ a1 cos
2π
T

x
� �

þ b1 sin
2π
T

x
� �

þ a2 cos
2π
0:5T

x
� �

þ b2 sin
2π
0:5T

x
� �

ð3Þ
Fig. 8. Stable forest mask for the study area (white for disturbed or nonforested areas;
black for stable forested areas).
where,

x Day-of-year.
T Number of days per year (T=365).
a0 Coefficient represents overall surface reflectance
a1, b1 Coefficients capture the annual changes of surface

reflectance
a2, b2 Coefficients capture the bimodal variations of surface re-

flectance for each year.

After estimating the models for each pixel and for each spectral
band, it is possible to predict what the “next” Landsat image will
look like at any location and any date if there is no snow, cloud, or
cloud shadow (Fig. 9).

One question that arises is howwell we predict future Landsat im-
ages. We test this by predicting images for dates of future acquisitions
and comparing themwith real images. For these comparisons it is im-
portant to exclude pixels that have undergone land cover change. To
select only “stable pixels” (i.e. no land cover change), we again use

the parameters from the time series model (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22;7 þ b22;7

q
b0:02 and

stable in the last clear observations see Eq. (2) for details). Several
metrics have been used to assess the error of predicted Landsat images
as compared to observed Landsat images (Table 1). Root Mean Square
Error (RMSE) and Residual normalized by Mean reflectance (RM) has
been used for error assessment separately by Gao et al. (2006) and
Roy et al. (2008). We also use a conventional R-square metric. Both
Gao and Roy's algorithms use multi-temporal MODIS data and Landsat
data to predict Landsat observations. Our CMFDA prediction only uses
multi-temporal Landsat data and shows very small errors. Four clear
Landsat ETM+ images acquired in different seasons were compared
with the predicted images for the study area (Table 1). The prediction
errors for autumn and winter images are smaller than those in spring
and summer images. The spring and summer images are more difficult
to predict because phenological change is large during these times.

3.6. Change detection algorithms

The basis of our methods is comparison of the predicted images
with observed images to find change. Since we can make these com-
parisons for any date that has Landsat acquisitions, we are faced with
a question regarding howmany dates, or comparisons, to use. Ideally,
a single comparison would be definitive. However, there is sufficient
noise in the system due to factors like atmospheric haze, missed
clouds or cloud shadows, that when using a single date for

image of Fig.�8


Fig. 9. (left) Observed and (right) predicted Landsat surface reflectances at a subset of the study area (shown with Bands 4, 3, and 2 in red, green, blue).
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comparison, there are numerous false positives (false identification of
forest disturbance). One approach to try to minimize this effect is to
process a set of dates together as a group, as noise factors tend to
be ephemeral in nature, but forest disturbance is persistent through
time.

3.6.1. Single-date differencing algorithm
Ideally, if clouds, cloud shadows, and snow are well screened, the

difference between the predicted and the observed image at the same
day-of-year should be land cover change. However, omission of
clouds and thick aerosols can lead to comparably large rates of false
detection of forest disturbance. Fortunately, most of surface reflec-
tance change caused by missed thin clouds or heavy aerosols behaves
different spectrally from changes caused by forest disturbance.
Though, in both of these situations, Band 1 and Band 7 surface reflec-
tance will increase, the magnitude differs greatly. When forest is
clear-cut or thinned, Band 7 will be strongly influenced while Band
1 will be only slightly changed (Healey et al., 2006), which is the op-
posite of the effect of thin cloud and thick aerosols. A ratio between
increases in Band 7 and Band 1 can separate the noise effects (thin
clouds and thick aerosols) from forest disturbance. Based on sensitiv-
ity analysis, a threshold of 3.0 for the ratio was used. Pixels with the
ratio less than this threshold are ignored even if they show large dif-
ference in change indices.

Many different change indices have been developed for detecting
forest disturbance. The simplest change index is the original surface
reflectance. Healey et al. (2006) suggested the red band and SWIR
bands are more sensitive to forest disturbance than the other Landsat
optical bands. The most commonly used indices are from the Tasseled
Cap Transformation (Crist, 1985; Crist & Cicone, 1984) which reduces
the six Landsat optical bands into three orthogonal indices — Bright-
ness (B), Greenness (G), and Wetness (W), capturing the three
major axes of spectral variation across the solar reflective spectrum.
Wetness is particular useful in forest disturbance detection (Collins
& Woodcock, 1996; Franklin et al., 2000). The Normalized Difference
Table 1
R2, RM, and RMSE for predicted Landsat images at different seasons. For each spectral band

Time Spring (04/26/2001) Summer (06/16/2002)

Metrics R2 RM RMSE R2 RM RMS

Band 1 0.89 0.19 0.006 0.84 0.16 0.00
Band 2 0.91 0.2 0.009 0.87 0.16 0.01
Band 3 0.94 0.22 0.009 0.89 0.26 0.01
Band 4 0.91 0.04 0.016 0.89 0.07 0.02
Band 5 0.95 0.1 0.018 0.91 0.08 0.01
Band 7 0.95 0.14 0.014 0.91 0.17 0.01
Vegetation Index (NDVI) (Tucker, 1979) derived from TM Band 3 and
Band 4 has been used extensively in many kinds of vegetation change
detection algorithms. The Normalized Burn Ratio (NBR) has been
used to assess the burn severity in Landsat images using Band 4 and
Band 7. This index provides the best difference between health and
burned vegetation (Howard et al., 2002). Recently, the newly devel-
oped Disturbance Index (DI) (Healey et al., 2005; Healey et al.,
2006) has been used for large area Landsat forest disturbance detec-
tion (Masek et al., 2008). It is based upon the observation that cleared
forest stands usually have a higher Brightness value and lower Green-
ness and Wetness values than forest stands. The DI transformation is
a linear combination of the three Tasseled Cap indices re-scaled by
the mean and standard deviation of the scene's forest value. As
CMFDA models the phenology and BRDF effects in the data, we do
not need to re-scale the DI by the mean and standard deviation. We
simply used a linear combination of B–(G+W) as one of the tested
change indices. We tested most of the indices discussed above, in-
cluding: Band 3 surface reflectance, Band 7 surface reflectance,
NDVI, NBR, Wetness, and B–(G+W). Eq. (4) was applied to every
pixel for the observed image and predicted image of the same day
and this process was repeated for all available dates of Landsat data
to identify forest disturbance. The B–(G+W) change index was
used as it performed the best among all the tested change indices
when a threshold of 0.18 was used for our study area (see
Section 4.1.1. for detail).

Forest disturbance¼ stable forest mask is true and clear
observation is true Fmaskð Þ

and
obsB7−predB7
obsB1−predB1

> 3 and B− GþWð Þð Þobs− B−GþWð ÞÞpred > 0:18

ð4Þ

As we are identifying the disturbance pixels using a single obser-
vation, the only criterion that determines whether a pixel has
, the highest R2, smallest RMSE and RM are in bold.

Autumn (10/06/2002) Winter (01/04/2001)

E R2 RM RMSE R2 RM RMSE

6 0.83 0.13 0.004 0.89 0.13 0.004
0.9 0.08 0.004 0.92 0.09 0.005

4 0.89 0.17 0.006 0.94 0.11 0.007
7 0.89 0.03 0.012 0.9 0.06 0.014
8 0.94 0.05 0.011 0.97 0.06 0.013
9 0.91 0.1 0.01 0.96 0.09 0.011

image of Fig.�9
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changed or not is the change magnitude of the index and a fixed Band
7/Band 1 ratio. Therefore the single-date differencing algorithm is
sometimes affected by ephemeral noise and causing relatively large
commission errors in change detection. Moreover, at different loca-
tions and for different forest types, the magnitude of the change
threshold may differ, and the Band 7/Band 1 ratio test may fail, lead-
ing to lower accuracy for the single-date differencing algorithm. A
method based on multi-date observations may solve these problems.

3.7. Multi-date differencing algorithm

One way to help reduce the effect of noise factors on commission
errors (false forest change) is to use multiple observations through
time. If a pixel is observed to change in multiple successive images,
it is more likely to be forest disturbance. The multi-date differencing
algorithm determines a disturbance pixel by the number of times
that observed and predicted images differ more than a threshold in
successive images. Pixels showing change for one or two times will
be flagged as “probable change”. If a third consecutive change is
found, the pixel is assigned to the “change” class. Optimal results
were obtained when B–(G+W) was used as change index with a
threshold of 0.12 (see Section 4.2.1. for detail). The details of the
multi-date differencing algorithm are presented in Eq. (5).

Forest disturbance ¼ stable forest mask is true and clear observation
is true Fmaskð Þ

and 3 consecutive observations with B− GþWð Þð Þobs
− B− GþWð Þð Þpred > 0:12

ð5Þ

Notice that its optimal threshold is 0.06 less than the single-date
differencing algorithm. With a lower threshold, very subtle changes
(forest thinning) will be identified. Thanks to the addition of the tem-
poral dimension, most of the commission errors were excluded by the
need for consecutive observations to exceed the threshold (see
Section 4.2.2 for details). Also, the empirically derived Band 7/Band
1 relationship is no longer necessary. Considering all these benefits
from using consecutive observations, the multi-date differencing al-
gorithm was chosen as the final CMFDA result, and the single-date
differencing algorithm was used only for finding changes in the last
clear observation in defining stable forest mask.

3.8. Accuracy assessment

3.8.1. Reference map
Maps derived from remotely-sensed imagery should always be

assessed for accuracy against an independent dataset that is closer
to the truth. This independent dataset is usually from in situ field
work or manual interpretation of finer resolution images like IKONOS
or QuickBird. In this study, not only do we need to determine where
disturbance occurs but also when. As there are no independent data-
sets available that have finer spatial resolution and higher temporal
frequency than Landsat images, the reference data were derived
from manual interpretation of the original Landsat images (Cohen et
al., 2010). High spatial resolution images from Google Earth (http://
earth.google.com/) were used to help the manual interpretation.
Though the high spatial resolution images in Google Earth cannot
provide the same temporal frequency as Landsat TM/ETM+, their
high spatial resolution is helpful in separating forest, nonforest, and
disturbance at longer time intervals. Two types of forest disturbance
(clear-cut and thinning) were included in this reference dataset.
The partial cuts and clear-cuts are quite easy to identify in the high
spatial resolution images in Google Earth, as the details of the individ-
ual trees can be clearly seen. False color composites of Landsat Band 4,
Band 3, and Band 2 surface reflectances were used to visualize the dif-
ferent types of disturbances (see Fig. 1 for example). In these images,
mature forests appear dark red, while clear-cut areas show bright
white color and the partial cut locations are less dark red. We chose
21 rectangular areas that contain forest disturbance patches of differ-
ent sizes and include other land cover classes to train and evaluate
the algorithm. All chosen rectangular areas, each with width and
length larger than 3 km, were carefully interpreted to determine pre-
cisely the location and timing of forest disturbance.

Two steps were used to produce the final disturbance reference
map. First, an annual disturbance map was generated by visually
comparing the last clear Landsat image in 2002 and the last clear
Landsat image in 2003. Forest disturbance that occurred in 2003
should be captured in this annual disturbance map. If there was con-
fusion in comparing the two Landsat images, high spatial resolution
images before and after 2003 (can be a few years apart) from Google
Earth were used to help determine what was happening at the specif-
ic locations. In the worst case, if both high spatial resolution images
from Google Earth and the Landsat images pairs do not support a con-
fident decision, the time series of surface reflectances were used to
better identify the disturbed pixels (Fig. 10).

The timing of the disturbancewas derived by careful interpretation
of all available Landsat TM/ETM+ images acquired in 2003 (a total of
24 images with cloud cover less than 90%). Within each rectangular
area, the interpreter sorted through all the TM/ETM+ images careful-
ly. The disturbance date is the first timewhen forest changes are found
and it is determined by visually comparing each pair of consecutive
images. The result is a set of reference rectangles that show the loca-
tion of forest disturbance that occurred in 2003, labeled with the
date when the disturbances were first observed (Fig. 11). These sites
then serve as our reference data to train and evaluate CMFDA.

We divided the reference rectangles into two groups: one group
used for training CMFDA, that is, to find the optimal change index,
threshold, and number of consecutive observations; one group used
for evaluating CMFDA accuracy. The reference rectangles were sorted
and ranked by size and the odd number ranked rectangles (in blue)
were used for help training CMFDA, and the even number ranked rect-
angles (in red) were used for evaluating CMFDA (Fig. 11). The goals of
this approach were to roughly divide the reference data in half for
training and testing, and to avoid bias bymaking sure that entire poly-
gons were either training or testing, but not both (Friedl et al., 2000).

3.8.2. Definitions of accuracy
Considering the misregistration errors in the Landsat images and

especially the ambiguity in validating disturbance at the edge of the
change patches, pixels located on the edges of the disturbance poly-
gons (within 1 pixel of the border) were not included in accuracy as-
sessment. As the disturbance map has both spatial and temporal
information, we assessed the spatial and temporal map accuracies
separately. We think the spatial accuracy is more important than
temporal accuracy, as omission and commission of disturbance is
more serious than finding disturbance later than the reference map.
Overall map accuracy is not a very useful measure in this case as the
proportion of forest change is small and therefore the accuracy of
the forest change class would not contribute significantly to the over-
all accuracy. Instead, the producer's and user's accuracies for the for-
est disturbance class in Eqs. (6) and (7) were more important for
evaluating the algorithm. Basically, with higher producer's accuracy,
there will be fewer omission errors and with higher user's accuracy,
fewer commission errors (Congalton, 1991).

producer0s accuracy ¼ num of correctly identified disturbance pixels
num of disturbance pixels in reference map

ð6Þ

user0s accuracy ¼ num of correctly identified disturbance pixels
num of disturbance pixels in algorithm map

ð7Þ

http://earth.google.com/
http://earth.google.com/


Fig. 10. Time series data of a typical disturbed deciduous forest pixel for all 6 optical Landsat surface reflectance bands. Persistent changes are easily identified by comparing the
predicted surface reflectances and the observed clear surface reflectances.
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Temporal accuracy is evaluated for the forest disturbance pixels
that are correctly identified spatially. With the temporally dense
Landsat images, forest thinning may be observed before a forest
clear-cut as clear-cutting may need a few weeks to finish. It is difficult
to determine the disturbance time for this kind of subtle change be-
fore a clear-cut. The reference map labels a disturbance time when
the disturbance is initially observed with high confidence by the in-
terpreter. However, CMFDA can find very subtle changes at the very
beginning of the disturbances. Therefore, the algorithm occasionally
finds disturbances earlier than the reference map, which is not con-
sidered a mistake, but rather the limitation of manual interpretation
in defining subtle changes. We think the algorithm is correct tempo-
rally if the disturbance time found by CMFDA is earlier or equal to the
disturbance time in the reference map and the temporal accuracy is
calculated with Eq. (8).

temporal accuracy ¼ num of pixels algorithm time≤reference timeð Þ
num of correctly identified disturbance pixels

ð8Þ

The producer's/user's accuracies in the spatial domain and the
temporal accuracy were used to find the best change index, its opti-
mal threshold, and the number of successive clear observations to
use for change identification.
4. Results

4.1. Single-date differencing algorithm results

4.1.1. Selecting a change index and thresholds
The odd number ranked rectangles were used for helping select a

change index and thresholds for the single-date differencing algo-
rithm. In Fig. 12 the spatial user's and producer's accuracies and the
temporal accuracy are plotted as a function of the threshold used
for different change indices. We use the intersection of the producer's
and the user's accuracies as the “best” threshold, as it balances errors
of omission and commission. The Disturbance Index B–(G+W) per-
formed the best among all the tested change indices. When the
threshold of 0.18 was used for the change in the Disturbance index,
both the producer's and user' accuracies were around 90%, and the
temporal accuracy is around 85%. The spatial accuracies of the other
five tested indices are slightly lower, but are all above 88%. The tem-
poral accuracies are also related to the thresholds used for defining
change, usually the higher the threshold, the later the captured
change, which leads to lower temporal accuracies. For most of the in-
dices the temporal accuracies are around 85%, except for the two in-
dices (NDVI and NBR) that use the NIR band as its main input. The
NIR surface reflectance varies significantly with vegetation phenolo-
gy, which may induce problems in determining the time of detected
changes and reduce the temporal accuracies.

image of Fig.�10


(Day-of-year)

Fig. 11. Reference map for forest disturbance in 2003 at study area. The blue reference rectangles were used for training and the red ones were used for evaluating the accuracy of
CMFDA.
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4.1.2. Testing on unseen reference data
The even number ranked rectangles were used to evaluate the ac-

curacy of the single-date differencing algorithmwith B–(G+W) as its
change index and a threshold of 0.18. The confusion matrix of spatial
accuracies is shown in Table 2. Both the user's and producer's accura-
cies for forest disturbance are more than 93%, and producer's accura-
cy is slightly higher than the user's accuracy. The temporal accuracy
of those spatially corrected identified forest disturbance pixels is
about 90%.

4.2. Multi-date differencing algorithm results

4.2.1. Selecting the number of successive observations and thresholds
The effects of using multiple consecutive dates as part of the

change detection with B–(G+W) as the tested change indices are
shown in Fig. 13. Fig. 13 (top) shows the spatial accuracies (both
user's and producer's) for different change thresholds and different
lengths of successive identifications of change for the same pixel.
The highest accuracy is achieved from three successive clear observa-
tions with a threshold of 0.12. In this best scenario, the producer's and
user's accuracies in the spatial domain are around 95% and the tem-
poral accuracy is approximately 93%. Due to the relatively large num-
ber of commission errors when using only one clear observation, the
user's accuracy is too low to be shown in Fig. 13 (top). Though the op-
timal threshold is 0.06 less than the single-date differencing algo-
rithm, its commission error is lower (higher user's accuracy). The
spatial accuracies are relatively robust to this optimal threshold
when three consecutive clear observations are used. The temporal ac-
curacies are related to the change thresholds and the number of suc-
cessive observations, usually the higher the threshold or the larger
number of successive observations, the later the captured change,
and lead to lower temporal accuracies. Generally, the temporal accu-
racies for multi-date differencing algorithms are all high (more than
85%) when the threshold varies greatly (from 0.08 to 0.16) and they
are not very sensitive to the number of successive observations
used (Fig. 13 (bottom)).

image of Fig.�11
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Fig. 12. Accuracies for the single-date differencing algorithm for the six different change indices.
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4.2.2. Testing on unseen reference data
Similarly, the even number ranked rectangles were used to evaluate

the accuracy of the multi-date differencing algorithm with B–(G+W)
as its change index, a threshold of 0.12, and three consecutive observa-
tions. The confusion matrix of spatial accuracies is shown in Table 3.
Both the user's and producer's accuracies for forest disturbance are
more than 95%, and producer's accuracy is also higher than the user's
accuracy. The temporal accuracy of the correctly identified forest distur-
bance pixels is almost 94%.

The map derived from multi-date differencing algorithm shows
locations and dates of forest disturbance during in 2003 (Fig. 14).
The colors of the polygons represent the first date the forest distur-
bance is captured by the algorithm using all available Landsat images.
Within all the 21 reference rectangles, the multi-date differencing



Table 2
Confusion matrix for the accuracy assessment of the single-date differencing algorithm.
The overall accuracy results are not terribly revealing, as after excluding the edges of
the change polygons, the change pixels left are only about 3% of the total interpreted
pixels.

Reference data

Single-date differencing Forest disturbance Others Total User's (%)

Forest disturbance 7422 523 7945 93.42
Others 492 241,969 242,461 99.80
Total 7914 242,492 250,406
Producer's (%) 93.78 99.78 Overall (%) 99.59

Table 3
Confusion matrix for the accuracy assessment of the multi-date algorithm. The overall
accuracy results are not terribly revealing, as after excluding the edges of the change
polygons, the change pixels left are only about 3% of the total interpreted pixels.

Reference data

Multi-date differencing Forest disturbance Others Total User's (%)

Forest disturbance 7653 333 7985 95.83
Others 261 242,159 242,420 99.89
Total 7914 242,492 250,406
Producer's (%) 96.70 99.86 Overall (%) 99.76
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results and the reference map are very similar. However, at this
60×60 km scale, it is difficult to find any significant differences be-
tween the reference map and the map derived by the algorithm.
Looking closer at three reference rectangles used for testing
(Fig. 15), the disturbance map derived from the algorithm agrees
closely with the disturbance found in the reference map both spatial-
ly and temporally (green color). The three types of disagreements
(blue, violet, and red) are all distributed at the edges of disturbance
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Fig. 13. (top) Spatial and temporal (bottom) accuracies of the multi-date differencing algo
change index thresholds. Notice that the intersection of user's and producer's accuracies ge
patches. These false identifications are mainly caused by the misregis-
tration in the image stack and problems in interpreting forest distur-
bance at the boundaries of patches.

5. Discussion and conclusions

In this study, we developed a new change detection algorithm for
continuous monitoring of forest disturbance at high temporal fre-
quency. This approach also allows construction of a history of forest
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Fig. 14. Multi-date differencing aglorithm map for forest disturbance in 2003 at study area.
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disturbance. Using all the available Landsat ETM+ images in two
years, models using sines and cosines are fit for each pixel and each
spectral band. These models can predict Landsat images at any date
assuming there is not any land cover change. CMFDA flags forest dis-
turbance by differencing the predicted and observed Landsat images.
We tested two algorithms called single-date and multi-date
differencing for detecting forest disturbance. The multi-date
differencing algorithm was chosen as the final change detection
method for CMFDA due to its higher spatial and temporal accura-
cies. It uses B–(G+W) as its change index and a threshold of
0.12 for defining “change”. It determines a disturbance pixel by
the number of times “change” is observed consecutively. Pixels
showing “change” for one or two times are flagged as “probable
change”. If a third consecutive “change” is found, the flag will be
mapped as forest change. The reference map revealed that the
CMFDA result is accurate in detecting forest disturbance both spa-
tially and temporally at the tested Savannah River site, with produ-
cer's and user's accuracies higher than 95% and temporal accuracy
of approximately 94%.
CMFDA has many advantages. It can be fully automated and has
the potential of monitoring forest disturbance continuously as new
images are collected. Though a predefined change threshold is
used at this specific study site, sensitivity analysis suggests this al-
gorithm is relative robust to this threshold when three consecutive
clear observations are used. The continuous character of the moni-
toring makes the algorithm capable of identifying disturbance soon
after Landsat observations become available. Therefore, how fast
the CMFDA is able to find change accurately is solely dependent
on the frequency of available clear observations. The potential to
use the methods presented here for monitoring surface change
will improve as the frequency of high resolution images from sen-
sors like Landsat become more available (Arvidson et al., 2006).
The first major step forward in this domain was the opening of
the US archive so that the vast holding of Earth Resources Observa-
tion and Science (EROS) Data Center can be used. With regard to fu-
ture observations, the launch of the Landsat Data Continuity Mission
(LDCM) should greatly increase the frequency of available observa-
tions as the duty cycle for LDCM is larger than any of the previous



Fig. 15. Zoom in of reference and error maps. The colors in reference map show the disturbance time (same legend in Fig. 14). The colors in accuracy map show different types of
errors (see legend of this figure).
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Landsat satellite. More importantly, when the two Sentinel 2A/2B
satellites are launched, they will have a repeat time of every five
days. When combined with LDCM data, there would be as many
as 8 high resolution observations per month, which will greatly im-
prove the availability of observations such that we will be able to
begin to monitor change in near real time (a week or two in
many parts of the world).

By considering each pixel separately, CMFDA can overcome most
of the limitations that the conventional approaches have. By using
any clear observations for each pixel to track spectral trends over
time, CMFDA expands the use of Landsat images to any time of year
and to all kinds of conditions (e. g., cloud, snow, heavy aerosols). As
CMFDA fits models for each pixel, it can work in heterogeneous forest
areas which are reported to be problematic for the scene-based nor-
malized change indices such as IFZ and DI (Huang et al., 2010;
Masek et al., 2008). The problem caused by the failure of the Scan
Line Corrector (SLC) in Landsat 7 is not nearly as significant for
CMFDA as compared with more conventional approaches. The scan
line gaps are treated just like clouds or other things that remove ob-
servations from images and the available good observations are
used. One area of future research will be to integrate observations
from adjacent Landsat images in the zone of “side lap”. This approach
will further minimize the effects of Landsat 7 SLC-off gaps as they are
most pronounced in these areas of side lap. The same is true for im-
ages with partial cloud cover, as they have many useful observations.
As a result, it would be highly desirable if the Landsat satellites of the
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future collected all possible observations, as even partially cloudy im-
ages have value in analysis systems like CMFDA.

CMFDA also has limitations. First of all, CMFDA works better with
larger number of observations. However, areas outside the U.S. may
not have enough observations, particularly for some years in the
1980s and 1990s (Goward et al., 2006). Luckily, the new acquisition
strategies for Landsat 7 (Arvidson et al., 2001; Arvidson et al., 2006)
provide more frequent observations. The years between 1999 and
early 2003 might be considered as the “golden years” for estimating
models for CMFDA, as during this time both Landsat 5 and Landsat
7 are functioning normally. Therefore, we could build models for
each pixel during this period and flag future changes. Similarly, we
can detect changes that occurred in the 1980s and 1990s as long as
there are data available using the models calibrated in the “golden
years”, by running the time series analysis backward in time. The sec-
ond limitation of CMFDA is the computation time associated with cre-
ating models to predict future surface reflectance. The two-step
cloud/cloud shadow, and snow masking is critical, as including
noise factors in the data undermines the entire process. However,
when the prediction models are ready, CMFDA is able to update a dis-
turbance map as soon as a new Landsat observation is acquired. This
process is very fast and does not require reanalysis of the historical
data. Such an approach points to the possibility of processing images
in CMFDA as part of the process for ingesting new images, paving the
way for monitoring land cover change as close as possible to when it
happens using Landsat data. A third limitation is that the methods
proposed above are all based on the assumption that land cover
change only occurs once in the detection period which is not true if
the detection period is longer than some of the “permanent change”
like forest disturbance. Masek et al. (2008) suggested that the highest
forest disturbance cycle time is approximately 5 years. To include
changes of this frequency, CMFDA needs to re-estimate the surface
reflectance models using the newest data available at 5 years inter-
vals. Finally, though CMFDA identifies forest disturbance much
quicker than the conventional approaches, the expected time to find
“probable change” and “change” in CMFDA is still too long to monitor
changes as they are occurring. Assuming cloud probability of 50%,
CMFDA will typically need at least half a month to find “probable
change” and one and a half months to find “change” in places with
the most frequent observations like United States. It will take longer
in other parts of the world due to less frequent Landsat observations.
To achieve the goal of global near-real time monitoring of land cover
change, using more Landsat-like sensors or fusion with higher tempo-
ral frequency sensors like MODIS (Hilker et al., 2009) are choices in
future studies.

This study is a “prototype” for monitoring forest disturbance con-
tinuously with high temporal frequency. The robustness of this ap-
proach has not been tested in other areas. Therefore, there is still
much work needed. Expansion of the study to other regions will un-
doubtedly result in improvements to the approach because of the dif-
ferences in forest types, tree density, composition of species, and
background (rocks/soil). One area of future work will be to broaden
the variety of models used for the temporal trajectory of surface re-
flectance. While combinations of sines and cosines worked well in
this situation, there will be a need for other models in other locations.
There is no reason a whole family of models couldn't be tested for
each pixels and the best model selected.

In this first use of this approach we estimated the models on the
years 2001 and 2002 and applied the model to 2003. When looking
retrospectively (to reconstruct the history of forest disturbance) it
will be possible to look at much longer time series of images and se-
lect a set of years that do not exhibit change for calibrating the surface
reflectance models that are then applied to other years. In this case,
there is no reason to constrain all pixels in an area to being estimated
on the same set of years. This approach will in some ways simplifying
both the estimating of the surface reflectance models and their usage
as they won't be complicated by change near the beginning or end of
the estimating period. Moreover, CMFDA has the potential of moni-
toring other land cover changes if a specific predefined land cover
mask can be derived accurately. For instance, it is possible to identify
wetland loss by finding changes within a predefined wetland map, or
if we are looking for changes in agriculture land use, we may be able
to monitor agriculture abandonment. Further studies are necessary
for detecting other land cover changes using algorithms similar as
CMFDA.
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