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The free and open access to all archived Landsat images in 2008 has completely changed the way of using
Landsat data. Many novel change detection algorithms based on Landsat time series have been developed
We present a comprehensive review of four important aspects of change detection studies based on
Landsat time series, including frequencies, preprocessing, algorithms, and applications. We observed
the trend that the more recent the study, the higher the frequency of Landsat time series used. We
reviewed a series of image preprocessing steps, including atmospheric correction, cloud and cloud
shadow detection, and composite/fusion/metrics techniques. We divided all change detection algorithms
into six categories, including thresholding, differencing, segmentation, trajectory classification, statistical
boundary, and regression. Within each category, six major characteristics of different algorithms,
such as frequency, change index, univariate/multivariate, online/offline, abrupt/gradual change, and
sub-pixel/pixel/spatial were analyzed. Moreover, some of the widely-used change detection algorithms
were also discussed. Finally, we reviewed different change detection applications by dividing these
applications into two categories, change target and change agent detection.
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1. Introduction

Landsat data have been used to study how the Earth’s surface
has been changing for decades due to its long history and relatively
high spatial resolution (Kennedy et al., 2014). However, for a long
time, Landsat data have rarely been used for time series analysis,
due to the high cost (Loveland and Dwyer, 2012) and the need
for large storage and high-performance computing capabilities
(Hansen and Loveland, 2012). Historically, change detection using
Landsat data was mainly based on comparing images at two differ-
ent times – the bitemporal approach (Singh, 1989). Although the
bitemporal approach is mathematically simple and does not need
to store large amount of data, it is less useful compared to the time
series approach that is able to provide more comprehensive under-
standing of the complexity of the Earth’s surface dynamics (Coppin
et al., 2004). In recent decades, the cost of data storage has
decreased dramatically, and we have witnessed an overwhelming
increase in computing power, which provide the foundation for
time series analysis suing Landsat data. In 2008, the free and open
access to the whole Landsat archive has further revolutionized the
way of using Landsat data (Woodcock, 2008; Wulder et al., 2012).
Many studies used Landsat time series, and a majority of them
were focused on change detection (Banskota et al., 2014).

Recently, with the Landsat Global Archive Consolidation (LGAC)
initiative, more than 3.2 million Landsat images have been added
to the archive located at the U.S. Geological Survey (USGS) Earth
Resources Observation and Science (EROS) Center (Wulder et al.,
2016). This has made time series analysis with Landsat data possi-
ble for places previously characterized by an insufficient density of
Landsat time series. Though the Scan Line Corrector (SLC)-off on
Landsat 7 has greatly impacted the use of Landsat data, it has lim-
ited influence on time series analysis. Basically, we can treat those
SLC-off areas the same as clouds or cloud shadows and use what is
left for time series analysis for each individual pixel (Zhu and
Woodcock, 2014a, 2014b). The launch of Landsat 8 in 2013 has
filled the role of the long-lasting Landsat 5 and compared to the
previous Landsat satellites Landsat 8 is collecting way more images
ig. 1. Yearly publications from 1994 to 2017 indexed by Scopus. The Search was condu
ticle tile, abstract, and keywords. A total of 254 articles were found (document type o
(Roy et al., 2014), at a substantially higher signal to noise ratio
(Schott et al., 2016). All of these factors have made time series
analysis with Landsat data one of the top research topics in the
remote sensing community.

Remote sensing change detection is the process of identifying
differences between images at different times (Singh, 1989). In this
process, seasonal differences caused by solar angle differences and
vegetation phenological changes are usually seen as the major
sources of noise in change detection and need to be avoided by
selecting images from the same season or corrected based on some
de-seasoning methods. In this review, we will only focus on studies
that detect changes that are non-seasonal. Though plenty of liter-
ature reviews already exist on change detection using remote sens-
ing data, most of them only reviewed methods that use two dates
of images (Singh, 1989; Coppin et al., 2004; Lu et al., 2004).
Recently, some reviews discussed change detection algorithms
based on time series of satellite data, but they were either only
concentrated on detecting forest change (Banskota et al., 2014;
Thonfeld et al., 2015) or were not Landsat data specific (Boriah,
2010; Thonfeld et al., 2015).

Based on a literature search within Scopus, the largest abstract
and citation database of peer-reviewed literature, the number of
publications on ‘‘change detection”, ‘‘Landsat”, and ‘‘time series”
has increased dramatically after the opening of Landsat archive
for free access in 2008, and the increase is particularly noticeable
in that year (Fig. 1). This suggests that change detection using
Landsat time series has become a more important field in remote
sensing. Table 1 lists top 15 most relevant journals, most prolific
authors, and major research institutions within this field. Note that
the search within Scopus provided a total of 254 articles, but some
of them are not change detections based on Landsat time series or
are published later than the submission date of this review (we
excluded them in this review). Moreover, we also found some arti-
cles that are actually detecting change with Landsat time series but
are not included in Scopus (we added them in this review). In this
paper, we provided a comprehensive review of four important
aspects, including frequencies, preprocessing, algorithms, and
ction on June 27, 2017 by search ‘‘change detection”, ‘‘Landsat”, and ‘‘time series” in
nly included research article).



Table 1
Top 15 most relevant journals, most prolific authors, and major research institutions from 1994 to 2017 indexed by Scopus. The numbers in the parentheses represent the total
number of publications found in each category. The Search was conduction on June 27, 2017 by searching ‘‘change detection”, ‘‘Landsat”, and ‘‘time series” in article tile, abstract,
and keywords. A total of 254 articles were found (document type only included research article).

Most Relevant Journals Most Prolific Authors Major Research Institutions

Remote Sensing of Environment (79) Wulder, M.A. (15) USDA Forest Service (19)
Remote Sensing (17) Coops, N.C. (14) Oregon State University (19)
International Journal of Remote Sensing (17) Cohen, W.B. (13) University of Maryland (16)
IEEE Transactions on Geoscience and Remote Sensing (9) Yang, Z. (12) Canadian Forest Service (15)
ISPRS Journal of Photogrammetry and Remote Sensing (7) Kennedy, R.E. (12) The University of British Columbia (15)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (6) White, J.C. (9) Chinese Academy of Sciences (12)
Forests (5) Hermosilla, T. (7) Boston University (12)
Forrest Ecology and Management (5) Herold, M. (7) NASA Goddard Space Flight Center (11)
Photogrammetric Engineering and Remote Sensing (4) Huang, C. (7) USDA ARS Corvallis Forestry Sciences Laboratory (11)
Journal of Applied Remote Sensing (4) Sader, S.A. (7) United States Geological Survey (9)
International Journal of Applied Earth Observation and Geoinformation (4) Verbesselt, J. (7) University of Maine (8)
Environmental Monitoring and Assessment (4) Zhu, Z. (7) Humboldt-University zu Berlin (7)
Canadian Journal of Remote Sensing (4) Kuemmerle, T. (6) Ministry of Education China (7)
Applied Geography (4) Hostert, P. (5) Wageningen University and Research Centre (7)
Sustainability Switzerland (3) Radeloff, V.C. (5) South Dakota State University (7)
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applications for a total of 102 articles that used Landsat time series
for change detection published between 2000 and 2016.
2. Frequencies

The Frequencies of Landsat time series used for change detec-
tion have increased substantially in the recent years. A single Land-
sat satellite visits the same location in every 16 days, which means
it can collect 22–23 images per year for a given location (without
considering overlap areas). Two Landsat satellites can provide a
maximum of 45–46 images per year for the same location. Among
the 102 articles that use Landsat time series for change detection,
89 of them contain the information to calculate the number of
images used per year (Fig. 2). For those studies with multiple
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Fig. 2. Frequencies of Landsat time series used for change detection. The upper image (F
lower image (Figure B) shows the number of Landsat images used per year for all 89 artic
are the articles that used the original Landsat images as their inputs. The ‘‘circles” are the
articles that used statistical metrics as their inputs. The ‘‘triangles” are the articles that u
the average values of number of Landsat images used per year from all the articles pub
frequencies of Landsat time series, we used the highest frequency
to represent the studies. If the study only provided a total number
of Landsat images for several path/rows, we used the average fre-
quency (across several path/rows) to represent the frequency of
the study. Based on the statistics in Fig. 2, it is rare to see articles
that used more than one Landsat image per year before 2008; in
fact, many of them were using one Landsat images every two
(0.5 images per year) or four years (0.25 images per year). After
2008, the story changed completely. We not only observed more
articles (Fig. 1), but also observed a substantial increase in the
number of Landsat images used per year in each article (Fig. 2).
Studies that used one Landsat image per year or even 20–30
images per year appeared (Fig. 2A). As most of the time series stud-
ies were only interested in producing annual or biannual change
maps, they tended to select multiple images (partly cloudy images)
008 2009 2010 2011 2012 2013 2014 2015 2016

 publication

2008 2009 2010 2011 2012 2013 2014 2015 2016

 publication

igure A) shows the number of Landsat images used per year for all 89 articles. The
les with the number of Landsat images used per year less or equal to 2. The ‘‘crosses”
articles that used composite Landsat images as their inputs. The ‘‘diamonds” are the
sed image fusion of Landsat and MODIS images as their inputs. The ‘‘dashed line” is
lished in the same year.
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acquired in the same season and the same year to produce cloud-
free composite images as their inputs (‘‘circles” in Fig. 2). In this
way, seasonal differences caused by solar angle differences and
vegetation phenological changes were minimized, and the data
volume was reduced substantially. There are also studies that
fused Landsat data with MODIS data and were capable of predict-
ing Landsat image in every 16 days (22 images per year) for detect-
ing forest change (Hilker et al., 2009) (‘‘triangles” in Fig. 2A). After
2012, the average number of Landsat images used per year is
approximately 10 (‘‘dashed line” in Fig. 2) – another big increase
compared to 2008. In 2012, new approaches that used all available
Landsat images appeared in the literature (‘‘crosses” in Fig. 2).
These approaches can model the intra-annual seasonal changes
in the time series and detect change as quick as every 8 days
(Zhu et al., 2012). Note that there are also approaches that used
statistical metrics, such as percentiles and slopes, as inputs for
change detection (‘‘diamonds” in Fig. 2). It is obvious that the more
the recent the study, the more frequent the Landsat time series
used. The use of more frequent Landsat time series provides the
possibility of detecting change at a much faster pace. The dense
Landsat time series also provides the possibility of capturing the
intra-annual seasonal changes, and this information can be very
helpful for improving change detection accuracy.

3. Preprocessing

Before applying different change detection algorithms for Land-
sat time series, we need to perform a series of image preprocessing
steps, including atmospheric correction, cloud and cloud shadow
detection, and composite/fusion/metrics. To make sure the time
series are well aligned, most of the change detection algorithms
only select Level 1 terrain-corrected (L1T) Landsat images as their
inputs. The L1T Landsat images are reported to have high geomet-
ric accuracies (RMSE less than 30 meters in more than 99 percent
of the data; http://landsat.usgs.gov/geometry.php), and geometric
correction is generally considered unnecessary if only L1T Landsat
images are included in change detection (Zhu and Woodcock,
2014a). Moreover, in 2016, the USGS EROS Center started reorga-
nizing the Landsat archive into a formal tiered data Collection
structure, which ensures that Landsat Level-1 products provides
a consistent archive of known data quality (Tier 1, Tier 2, and
Real-Time) to support time series analyses and data ‘‘stacking”.
Highest available data quality Landsat images (image-to-image tol-
erances of <12 m RMSE; https://landsat.usgs.gov/landsat-collec-
tions) are placed into Tier 1 and are considered most suitable for
time series analysis.
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Fig. 3. Number of articles that used Fmask/CFmask (‘‘dashed line”) or LEDAPS/L8SR (‘‘s
articles that used Landsat time series to detect change.
3.1. Atmospheric correction

To reduce influences from atmosphere, atmospheric correction
is a common preprocessing step before detecting change. Gener-
ally, there are two categories of atmospheric correction
approaches: (1) relative normalization (Schroeder et al., 2006)
and absolute correction (Chávez, 1996; Song and Woodcock,
2003). Relative normalization involves adjusting the radiometric
of Landsat time series to a reference image based on the relation-
ship between pseudo-invariant features from multi-date images
(Song et al., 2001). Absolute correction can be further divided into
two categories: empirical and physical-based approaches. The
Dark-Object Subtraction (DOS) method is a widely used empirical
method for estimating the path radiance based on the darkest
value in the image (Song and Woodcock, 2003). DOS is relatively
simple, but it does not consider the pixel-to-pixel variation in
atmospheric effects. The physical-based approaches, such as Atmo-
spheric/Topographic CORrection (ATCOR; Richter, 1997), MODer-
ate resolution atmospheric TRANsmission (MODTRAN; Berk et al.,
1998), and the Satellite Signal in the Solar Spectrum (6S) code
(Vermote et al., 1997), are able to consider the heterogeneity of
the atmosphere, but need many complicated steps and manual
operations, which make them difficult to process large amount of
Landsat time series. However, the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) software (Masek et al.,
2006), which has adopted the 6S code, has made atmospheric cor-
rection for Landsats 4–7 fully automated. Recently, Vermote et al.
(2016) developed an improved atmospheric correction algorithm
for Landsat 8 (L8SR), which has shown an improvement over the
ad-hoc Landsats 5–7 LEDAPS product. In 2012, Landsats 4–7 sur-
face reflectance product generated from LEDAPS were provided
by the USGS EROS Center. Later in 2014, provisional Landsat 8 sur-
face reflectance products generated from L8SR were also provided
by the USGS EROS Center. The free distribution of Landsat surface
reflectance has greatly increased the use of LEDAPS- and L8SR-
based surface reflectance products in change detection with Land-
sat time series (‘‘dashed line” in Fig. 3).

3.2. Cloud and cloud shadow detection

The presence of clouds and their shadows complicate the use of
Landsat data, making the detection of both items an evitable step
prior to change detection. For a long time, cloud and cloud shadow
detection at pixel level only existed for coarse spatial resolution
sensors, such as Advanced Very High Resolution Radiometer
(AVHRR) and Moderate Resolution Imaging Spectroradiometer
2013 2014 2015 2016

ublication

olid line”) per year between 2009 and 2016. The statistics is derived from the 102

http://landsat.usgs.gov/geometry.php
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(MODIS) (Ackerman et al., 1998; Derrien et al., 1993; Saunders and
Kriebel, 1988). Though Landsat has been collecting data for dec-
ades, there is hardly any operational algorithm that is capable of
providing cloud and cloud shadow masks at pixel level. The Auto-
mated Cloud Cover Assessment (ACCA) system (Irish, 2000; Irish
et al., 2006) works well for estimating the percentage of cloud
cover for each individual Landsat image, but it does not provide
clouds and cloud shadows masks for every Landsat pixel.

Since the free access to the entire Landsat archive in 2008, many
cloud and cloud shadow detection algorithms have been developed
based on a single-date Landsat image (Braaten et al., 2015; Huang
et al., 2010b; Oreopoulos et al., 2011; Potapov et al., 2011; Roy
et al., 2010; Scaramuzza et al., 2012; Qiu et al., 2017; Vermote
et al., 2016; Vermote and Saleous, 2007; Zhu and Woodcock,
2014b, 2012). Most of the algorithms are designed for Thematic
Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), and
only a few algorithms are designed for Operational Land Imager
(OLI)/Thermal Infrared Sensor (TIRS) (Scaramuzza et al., 2012;
Vermote et al., 2016; Zhu et al., 2015a), and Multispectral Scanner
(MSS) (Braaten et al., 2015). Though all the algorithms are devel-
oped for the same purpose, the mechanism for identifying clouds
and their shadows are quite different. Generally, we can divide
the algorithms into two categories: physical rules based and
machine learning based algorithms.

The physical rule based algorithms detect clouds and their
shadows based on their physical characteristics (Braaten et al.,
2015; Huang et al., 2010b; Oreopoulos et al., 2011; Qiu et al.,
2017; Vermote et al., 2016; Vermote and Saleous, 2007; Zhu and
Woodcock, 2014b, 2012). Vermote and Saleous (2007) proposed
a cloud and cloud shadow detection algorithm for Landsat data
as one of the internal products in the LEDAPS software. This algo-
rithm needs other auxiliary data like surface temperature from the
National Centers for Environmental Prediction (NCEP) to generate
a surface temperature reference layer for detecting clouds. Later,
Vermote et al. (2016) proposed a cloud and cloud shadow detec-
tion algorithm for Landsat 8 data within the L8SR framework,
which takes the advantages of some of the new spectral bands
(e.g., the cirrus band and the new blue band). Huang et al.
(2010b) proposed an algorithm that detects clouds based on tem-
perature that are normalized by DEM and pre-classified confident
forest pixels, and the cloud shadows are detected based on the
solar-sensor geometry. Oreopoulos et al. (2011) modified a cloud
detection algorithm that was originally developed for MODIS
(Luo et al., 2008), and applied the algorithm to Landsat data. This
algorithm performs on par with the ACCA algorithm, without using
the thermal band. Zhu andWoodcock (2012) and Zhu et al. (2015b)
proposed a method called Fmask (Function of mask) to detect
cloud, cloud shadow, and snow in Landsats 4–8 images based on
the spectral and spatial information in the Landsat data. Clouds
are identified based on a cloud probability layer and a scene-
based dynamic threshold, and cloud shadows are matched with
clouds based on similarity and the corresponding solar-sensor
geometry. Recently, Qiu et al. (2017) integrated DEM with the
Fmask algorithm and developed a MFmask (Mountainous Fmask)
algorithm that showed better cloud and cloud shadow detection
results in mountainous regions. In 2013, the Fmask algorithm has
been reprogramed in C (CFMask) by the USGS EROS Center, and
the CFMask results are distributed by the USGS EROS Center along
with the surface reflectance product. This free distribution of
CFMask results has greatly increased the use of the Fmask algo-
rithm, and we can see a dramatic increase in using Fmask/CFMask
in change detection using Landsat time series since 2013 (‘‘solid
line” in Fig. 3). Moreover, within the formal tiered data Collection
structure provided by USGS in 2016, the CFmask algorithm is used
to provide the Quality Assessment (QA) band for all Collection 1
products. Cloud and cloud shadow detection in Landsat MSS
images is quite challenging, as MSS does not have thermal and
SWIR bands, both of which are critical in cloud detection. However,
Braaten et al. (2015) used a rule-based approach to detect both
clouds and cloud shadows in Landsat MSS images, and achieved
comparable accuracies to the Fmask algorithm.

The machine learning based algorithms identify cloud and
cloud shadow using a supervised classifier trained by previously
collected training data (Hughes and Hayes, 2014; Potapov et al.,
2011; Roy et al., 2010; Scaramuzza et al., 2012). Roy et al. (2010)
and Potapov et al. (2011) used decision tree classifier to classify
clouds and the classifiers were trained based on many manually
interpreted cloud masks. Scaramuzza et al. (2012) developed two
algorithms for detecting clouds based on Landsat 8 OLI (without
using TIRS bands), with one from an off-the-shelf machine learning
package (See5) and the other based on ACCA but enhanced by a
neural network (AT-ACCA). Both algorithms have shown good
accuracies and neither of them needs the thermal band as input.
Hughes and Hayes (2014) also explored the use of a neural net-
work classifier and spatial post-processing to identify clouds and
cloud shadows in Landsat images. Compared to the Fmask algo-
rithm, this approach achieved lower omission errors in cloud sha-
dow detection and slightly higher omission errors in cloud
detection. Though all these studies pointed out the usefulness of
machine learning based algorithms for cloud and cloud shadow
detection, these algorithms require a certain level of knowledge
of clouds, cloud shadows, and land surface condition within the
image (as the training data) and these algorithms can easily fail
to detect cloud and cloud shadow for certain unique conditions
(Huang et al., 2010b).

The recent progress of the fully automated cloud and cloud sha-
dow detection algorithms based on a single-date Landsat image
has facilitated many remote sensing applications that need to pro-
cess large number of Landsat images. However, for change detec-
tion using Landsat time series, the accuracy of single-date
algorithms remains insufficient. To further improve cloud and
cloud shadow detection accuracies, algorithms based on multitem-
poral Landsat images have been developed. Jin et al. (2013) and
Wang et al. (1999) proposed to detect clouds and their shadows
by comparing a cloud-free reference image to the observed images.
This approach is relatively simple and can provide accurate results,
but it is highly dependent on the availability and quality of the ref-
erence image, which makes it difficult to work operationally.
Recently, cloud and cloud shadow detection algorithms based on
Landsat time series have been developed, which are able to provide
accurate detection results, and at the same time fully automated
(Goodwin and Collett, 2014; Hagolle et al., 2010; Zhu and
Woodcock, 2014b). One disadvantage of these time series algo-
rithms is that they may also identify some ephemeral changes
(e.g., soil wetness change) as clouds or cloud shadows (Zhu and
Woodcock, 2014b). Considering the importance of accurate cloud
and cloud shadow detection in analyzing Landsat time series, more
time series based cloud and cloud shadow detection algorithms are
anticipated in the near future.

3.3. Composite, fusion, and metrics

Before detecting change, some algorithms need to create cloud-
free composite Landsat images, fuse Landsat images with other low
spatial resolution images, or calculate statistical metrics from the
Landsat time series.

Image compositing is a good tool for reducing data volume and
minimizing atmosphere influences, but most of the image com-
positing algorithms are only designed for coarse spatial resolution
images, such as AVHRR (Holben, 1986) and MODIS (Luo et al.,
2008), with only a few studies that are designed for Landsat
(Griffiths et al., 2013; Potapov et al., 2011; Roy et al., 2010;
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White et al., 2014; Zhu et al., 2015b). Roy et al. (2010) first pro-
posed an image composite method for Landsat ETM+ images
mainly based on a combination of maximum Normalized Differ-
ence Vegetation Index (NDVI) and highest brightness temperature
criteria. This method has been applied to the entire conterminous
U.S. and the final composites are provided for free download.
Potapov et al. (2011) used the median values of the Near Infrared
(NIR) band as the criteria for selecting the ‘‘best” observations
and this approach performed better than the conventional maxi-
mum NDVI compositing method. Griffiths et al. (2013) developed
a method that calculates scores for every Landsat observation, with
image compositing rules determined by the weighted scores that
are calculated based on acquisition year, acquisition day of year,
distance of a given pixel to cloud (from Fmask). Similarly, White
et al. (2014) proposed a pixel-based image compositing method
that calculates pixel scores based on sensor type, day of year, dis-
tance to cloud or cloud shadow (from Fmask), and opacity (from
LEDAPS). Zhu et al. (2015b) proposed to use all available clear
Landsat data to estimate time series models for each pixel and each
spectral band, and used the estimated time series models to pre-
dict daily clear-sky synthetic Landsat data. Among all these meth-
ods, it is hard to quantify which method works the best, as there is
not a standard set of reference images to compare with. Most of the
evaluations are made by visual check of the results based on natu-
ral color composite.

As the frequency of Landsat time series is relatively low, it may
take a few weeks or months to generate cloud-free composite
Landsat images, and the ‘‘best” observations selected from image
compositing may show large seasonal differences. To overcome
this limitation, fusing Landsat data with coarse resolution images,
such as MODIS data provides a solution (Gao et al., 2006; Hilker
et al., 2009; Roy et al., 2008; Zhu et al., 2010). Gao et al. (2006) pro-
posed the Spatial and Temporal Adaptive Reflectance model
(STARFM), which is capable of predicting Landsat-scale observa-
tions on MODIS observation dates. STARFM has been later modified
to form the Spatial Temporal Adaptive Algorithm for mapping
Reflectance Change (STAARCH) for detecting forest disturbance
(Hilker et al., 2009), and the Enhanced STARFM (ESTARFM) for bet-
ter handling of heterogeneous areas (Zhu et al., 2010). Gao et al.
(2015) reviewed STARFM, STAARCH, and ESTARFM, and suggested
that though these approaches can produce images with high spa-
tial temporal resolution, they are still dependent on the availability
of actual satellite images and the quality of the remote sensing
products, therefore, cannot replace the actual satellite missions.
Roy et al. (2008) proposed a semi-physical fusion approach that
uses MODIS Bidirectional Reflectance Distribution Function
(BRDF)/Albedo land surface characterization products to predict
Landsat images, and achieved good results. The synthetic Landsat
images generated by fusing Landsat and MODIS can substantially
densify the Landsat time series, which can be critical for time series
analysis in places that are frequently covered by clouds.

Metrics from Landsat time series can provide extra generic fea-
ture space, which is particularly useful for the multi-date classifi-
Landsat Time Series Change

Thresholding Differencing Segmentation

Classification SMA Spectral/index Hypothesized traje

Fig. 4. Categories and subcategories of Landsat
cation change detection method (Hansen et al., 2014, 2013;
Potapov et al., 2011, 2015, 2012). There are many kinds of metrics
that can be derived from Landsat time series, such as individual
ranks, means, and regression slopes of spectral bands and vegeta-
tion indices, and they are generally calculated either based on
time-sequential reflectance or reflectance ranking. One advantage
of this method is that the statistics derived from Landsat time ser-
ies are relatively robust to noise and contains temporal informa-
tion that are important inputs for multi-date classification
change detection method.
4. Algorithms

Based on the mathematical approach used for detecting change,
the Landsat time series change detection algorithms can be divided
into six major categories, including thresholding, differencing, seg-
mentation, trajectory classification, statistical boundary, and
regression (Fig. 4 and Table 2). Within each category, six character-
istics, including frequency, change index, univariate/multivariate,
online/offline, abrupt/gradual change, and sub-pixel/pixel/spatial
were discussed. The detailed definitions of these characteristics
are as follows.

Frequency: Number of Landsat images used for the same loca-
tion. We used three levels to indicate the frequency of Landsat data
used: low (a few years per image), medium (approximately 1
images per year), and high (more than 1 images per year). Algo-
rithms that use multiple cloudy Landsat images per year to derive
annual cloud-free composite images are categorized into medium
frequency.

Change index: The index used for detecting change, such as spec-
tral bands, vegetation indices, tasseled cap transformations, land
cover class, or land cover fractions.

Univariate/multivariate: Most of the change detection algo-
rithms use a single variable at each time point (univariate), but
there are some algorithms use multivariate vector at each time
point (multivariate).

Online/offline: Online change detection assumes the time series
data are coming in at a certain rate, and the main goal is to detect
changes in near real-time (or continuously), with minimum delay.
Offline change detection assumes the time series data already exist
and the main goal is to detect when the characteristics of the time
series changed.

Abrupt/gradual change: Abrupt change refers to large magnitude
changes which are usually occurred in a short time. Abrupt change
can be caused by disturbances such as deforestation, floods, fires,
or urbanization. Gradual change refers to small magnitude changes
which are usually occurred in a long time. Gradual change can be
triggered by factors, such as interannual climate variability or
gradual change in land management or land degradation.

Subpixel/pixel/spatial: Most of algorithms use pixel as their
smallest unit (pixel), but there are some algorithms use sub-pixel
information to detect change (subpixel). Most of the algorithms
Detection Algorithms

Trajectory Statistical boundary Regression

ctory Multi-date classification

time series change detection algorithms.



Table 2
Characteristics of different Landsat time series change detection algorithms.

Category Subcategory Temporal
Frequency

Change Index Univariate
Multivariate

Online
Offline

Abrupt
Gradual
Both

Subpixel
Pixel
Spatial

References

Thresholding Low Principal Components (PCs) Multivariate Offline Abrupt Pixel Hayes and Sader (2001)
Low NDVI Univariate Offline Abrupt Pixel Lee (2008)
Medium NDVI Univariate Offline Abrupt Pixel J. Li et al. (2015a)
Medium Disturbance index Univariate Offline Abrupt Pixel Pickell et al. (2014) and Sieber et al. (2013)
Medium Z-scores based on Tasseled Cap Transformation (TCT) Univariate Offline Abrupt Pixel Kayastha et al. (2012)
Medium Integrated Forest Z-score (IFZ) Univariate Offline Abrupt Pixel Chen et al. (2013) and Huang et al. (2010a, 2009)
High Multivariate Alteration Detection (MAD) variates Multivariate Offline Abrupt Pixel Alaibakhsh et al. (2015)
High Disturbance Index (DI), Tasseled Cap Brightness

(TCB), Tasseled Cap Wetness (TCW), & normalized
NDVI

Multivariate Offline Abrupt Pixel Hilker et al. (2009)

Differencing Classification Low Land cover Univariate Offline Abrupt Pixel Dekker et al. (2005), Giri et al. (2008), Giri and Muhlhausen
(2008), Mihai et al. (2015), Muttitanon and Tripathi (2005),
Palandro et al. (2003), Pillay et al. (2014), Ramadan et al.
(2004), Su (2000), Unger et al. (2015), Yang et al. (2015),
Zhang et al. (2013) and Zhao et al. (2014)

Low Land cover Univariate Offline Abrupt Spatial Liu and Cai (2012)
Medium Land cover Univariate Offline Abrupt Pixel Palandro et al. (2008)
High Land cover Univariate Offline Abrupt Pixel Knudby et al. (2010), Kontgis et al. (2015), Li and Narayanan

(2003), X. Li et al. (2015), Nutini et al. (2013), Pardo-Pascual
et al. (2014), Potapov et al. (2015) and Tulbure and Broich
(2013)

Spectral
Mixture
Analysis

Low Impervious fraction Univariate Offline Abrupt Subpixel Powell et al. (2008)
Low Vegetation and non-vegetation fractions Multivariate Offline Abrupt Subpixel Cunningham et al. (2015)
Medium Wetland fraction Univariate Offline Abrupt Subpixel Dingle Robertson et al. (2015)

Spectral/
Index

Low NDVI Univariate Offline Abrupt Pixel Hayes and Sader (2001) and Marzen et al. (2011)
Low Normalized Difference Wetness Index (NDWI) Univariate Offline Abrupt Pixel Jin and Sader (2005)
Low Change vector Multivariate Offline Abrupt Pixel Fraser et al. (2009) and Vorovencii (2014)
Medium Normalized Burn Ratio (NBR) Univariate Offline Abrupt Pixel Bolton et al. (2015) and Parker et al. (2015)
Medium Chang vector Multivariate Offline Abrupt Pixel Zanotta et al. (2015)
Medium DI and NBR Multivariate Offline Abrupt Pixel Neigh et al. (2014)
Medium Enhanced wetness Univariate Online Abrupt Pixel Linke et al. (2009)
High Red and blue bands Multivariate Offline Abrupt Pixel Hagolle et al. (2010)

Segmentation Medium NBR Univariate Offline Both Pixel Chance et al. (2016), Franklin et al. (2015), Kennedy et al.
(2010), Liang et al. (2014), Meigs et al. (2015, 2011) and Senf
et al. (2015)

Medium NBR Univariate Offline Both Spatial Hermosilla et al. (2015a,b) and Kennedy et al. (2015)
Medium TCW Univariate Offline Both Pixel Frazier et al. (2015), Griffiths et al. (2012) and Grogan et al.

(2015)

Trajectory
Classification

Hypothesized
Trajectory

Low NDVI & Normalized Difference Water Index
(MNDWI)

Multivariate Offline Abrupt Pixel Xue et al. (2014)

Low Tasseled Cap Angle (TCA) Univariate Offline Abrupt Pixel Ahmed et al. (2014)
Low Short-wave Infrared (SWIR) band Univariate Offline Abrupt Pixel Gillanders et al. (2008)
Medium SWIR band Univariate Offline Both Pixel Kennedy et al. (2007)

Multi-date
Classification

Low NDVI Univariate Offline Abrupt Pixel Hayes and Sader (2001) and Sader et al. (2003)
Low NDVI or NDWI Univariate Offline Abrupt Pixel Wilson and Sader (2002)
Low Spectral bands Multivariate Offline Abrupt Pixel Coops et al. (2010) and Gavier-Pizarro et al. (2012)
Low Spectral bands Multivariate Offline Abrupt Spatial Boucher et al. (2006)
Low Normalized Difference Moisture Index (NDMI) Univariate Offline Abrupt Pixel Sader and Legaard (2008)
Medium Spectral bands Multivariate Offline Abrupt Pixel Kaufmann and Seto (2001), Margono et al. (2012) and Sieber

et al. (2013)
Medium NDVI Univariate Offline Abrupt Pixel Maxwell and Sylvester (2012)
High Spectral bands metrics Multivariate Offline Abrupt Pixel Hansen et al. (2014, 2013) and Potapov et al. (2011, 2012)
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process each pixel independently, without considering the spatial
domain of the data, but there are some algorithms also consider
neighboring pixels (spatial).

4.1. Thresholding

The thresholding method employs a predefined threshold for
identifying a land cover (mostly forest) in the time series, and
changes are detected when there are significant deviations from
the threshold. Usually the Landsat images are transformed to the
dimension that is sensitive to a particular cover type. Most of
transforms are based on the normalized indices, such as normal-
ized NDVI (Hilker et al., 2009), z-scores based Tasseled Cap Trans-
formation (TCT) (Kayastha et al., 2012), Disturbance Index (DI)
(Hilker et al., 2009; Pickell et al., 2014; Sieber et al., 2013), or Inte-
grated Forest Z-score (IFZ) (Chen et al., 2013; Huang et al., 2010a,
2009). NDVI threshold is also used to study changes in vegetation
presence (Lee, 2008; J. Li et al., 2015a). Multivariate thresholding
methods such as Principal Component Analysis (PCA) (Hayes and
Sader, 2001) and Multivariate Alteration Detection (MAD)
(Alaibakhsh et al., 2015) have been used to extract the data dimen-
sion accounting for the interested change types. Most of the
thresholding studies use Landsat time series with medium fre-
quency, and all the thresholding studies used here are offline and
only detect abrupt changes at pixel level. The thresholding method
is simple to use, but is highly dependent on the threshold that is
predefined for a particular cover type.

4.2. Differencing

The differencing method detects change by comparing images
acquired at different time, and changes are defined by places that
show large differences. Based on the images used for differencing,
we can further divide this category into three subcategories: clas-
sification, Spectral Mixture Analysis (SMA), and spectral/index. By
differencing land cover classification results at different dates, also
known as post-classification comparison, changes in land cover
will be identified. This method has been widely used in change
detection based on Landsat time series, and most of them were
based on either low or high frequencies. As each individual image
is classified separately, atmospheric correction is unnecessary.
Moreover, this method can also provide ‘‘from-to” land cover infor-
mation. However, the accuracy of this method is highly dependent
on the accuracy of classification maps, and errors present in each of
the map are compounded in the final change map, such that this
method is highly vulnerable to classification errors. Methods such
as consistency checking or spatial–temporal techniques are
reported capable of reducing commission errors in the final change
maps derived from classification differencing (X. Li et al., 2015; Liu
and Cai, 2012). Similarly, we can compare land cover fractions
derived from SMA to detect change for different land cover types
(Cunningham et al., 2015; Dingle Robertson et al., 2015; Powell
et al., 2008). One benefit of this method is that we can get sub-
pixel information for places that have undergone changes. How-
ever, the accuracy of this method is also highly dependent on the
accuracy of SMA, and the errors are compounded similarly as the
classification differencing method. For the spectral/index method,
changes are detected by comparing spectral bands or indices at dif-
ferent time, and all three frequencies of Landsat time series have
been used in this subcategory. Change indices such as NDVI
(Hayes and Sader, 2001), Normalized Difference Wetness Index
(NDWI) (Jin and Sader, 2005), Normalized Burn Ratio (NBR)
(Bolton et al., 2015; Neigh et al., 2014; Parker et al., 2015), change
vector (Fraser et al., 2009; Vorovencii, 2014), DI (Neigh et al.,
2014), enhanced Wetness (Linke et al., 2009), and original spectral
bands (Hagolle et al., 2010) have been used in this method. Some of



378 Z. Zhu / ISPRS Journal of Photogrammetry and Remote Sensing 130 (2017) 370–384
the studies used a single index (Bolton et al., 2015; Hayes and
Sader, 2001; Jin and Sader, 2005; Linke et al., 2009; Marzen
et al., 2011; Parker et al., 2015), while others used multiple indices
to detect change (Fraser et al., 2009; Hagolle et al., 2010; Neigh
et al., 2014; Vorovencii, 2014; Zanotta et al., 2015). The spectral/
index method requires accurate radiometric calibration to make
the spectral/index comparable between the dates, but as long as
the data are well calibrated, the accuracy from this subcategory
will be a lot higher than the other two subcategories. All the differ-
encing methods discussed here are offline and only detect abrupt
changes. The differencing method is relatively simple to use, but
is highly dependent on the consistency of the images to be com-
pared with. Methods of classification and SMA differencing are
generally not recommended for change detection due to the likeli-
hood of including compounded errors from classification or SMA.

4.3. Segmentation

The segmentation method is an offline approach that needs to
have all the historical time series data available at the same time.
By segmenting the time series into a series of straight line seg-
ments based on the residual-error and angle criterions, both abrupt
and gradual changes can be detected based on the derived straight-
line segments at pixel level. Most of the studies in this category are
focused on forest change and only use a medium frequency of
Landsat time series. NBR (Chance et al., 2016; Franklin et al.,
2015; Hermosilla et al., 2015a, 2015b; Kennedy et al., 2015,
2010; Liang et al., 2014; Meigs et al., 2015, 2011; Senf et al.,
2015) and Tasseled Cap Wetness (TCW) (Frazier et al., 2015;
Griffiths et al., 2012; Grogan et al., 2015) are the only change
indices used in this category. Two studies incorporated spatial
information to help detect change, in which Kennedy et al.
(2015) used spatial adjacency and temporal coherence to improve
the final maps, and Hermosilla et al. (2015a,b) relabeled low-
reliability changes based on spatially-adjacent high reliability
change. The segmentation method is computational expensive,
but has shown great potentials in detecting forest change at large
scale.

4.4. Trajectory classification

The trajectory classification method first extracts information
from Landsat time series for places that have undergone certain
kinds of change (for training purpose), and later uses this informa-
tion to further classify every Landsat time series in the image.
Based on how the trajectory of Landsat time series is classified,
we can further divide this category into two subcategories:
hypothesized trajectory and multi-date classification. For the
hypothesized trajectory method, the rules for classifying different
kinds of changes are based on the hypothesized trajectories repre-
senting signatures specific to different kinds of changes. For the
multi-date classification method, there is no hypothesis on the
time series trajectories, but rather supervised classifiers are used
to classify different change types. In the hypothesized trajectory
approach, both low (Ahmed et al., 2014; Gillanders et al., 2008;
Xue et al., 2014) and medium (Kennedy et al., 2007) frequencies
of Landsat time series have been used. In the multi-date classifica-
tion method, most of the studies are based on low (Boucher et al.,
2006; Coops et al., 2010; Gavier-Pizarro et al., 2012; Hayes and
Sader, 2001; Sader et al., 2003; Sader and Legaard, 2008; Wilson
and Sader, 2002) and high (Hansen et al., 2016, 2014, 2013;
Hansen and Loveland, 2012; Potapov et al., 2011, 2015, 2012) fre-
quencies of Landsat time series, while only a few studies are based
on a medium frequency of Landsat time series (Kaufmann and Seto,
2001; Margono et al., 2012; Maxwell and Sylvester, 2012; Sieber
et al., 2013). Most of the trajectory classification methods are off-
line, except Hansen et al. (2016) developed an alerting system that
is able to monitor humid tropical forest in near-real time based on
newly collected Landsat images. The trajectory classification
method is mainly designed to detect abrupt changes, but
Kennedy et al. (2007) detected both gradual and abrupt changes
based on the hypothesized trajectory method. Moreover, the
hypothesized trajectory method favors univariate time series
(Ahmed et al., 2014; Gillanders et al., 2008; Kennedy et al.,
2007), while the multi-date classification method favors multivari-
ate time series (Boucher et al., 2006; Coops et al., 2010; Gavier-
Pizarro et al., 2012; Hansen et al., 2016, 2014, 2013; Kaufmann
and Seto, 2001; Margono et al., 2012; Potapov et al., 2012, 2011,
2015; Sieber et al., 2013). The trajectory classification method is
computational expensive, and this method requires fully under-
standing of the characteristics of different kinds of change.

4.5. Statistical boundary

The statistical boundary method expects the time series to fol-
low a statistical boundary and any significant departure from the
boundary is detected as a change. All the studies in this category
used a high frequency of Landsat time series. Most of the time
Landsat time series are decomposed into trend, seasonal change,
and noise components before estimating the statistical boundary.
Algorithms based on statistical quality control charts (Brooks
et al., 2014), econometrics structural change monitoring (DeVries
et al., 2015; Dutrieux et al., 2015; Hamunyela et al., 2016; Reiche
et al., 2015), and model prediction (Fu and Weng, 2016; Goodwin
et al., 2013; Goodwin and Collett, 2014; Vogelmann et al., 2015;
Zhu et al., 2016a, 2012; Zhu andWoodcock, 2014a, 2014b) are used
for estimating the statistical boundaries. Most of the studies are
able to detect change continuously (online), but some of them need
to have all the time series available before detecting change (off-
line) (Goodwin et al., 2013; Goodwin and Collett, 2014; Zhu and
Woodcock, 2014b). Univariate time series are widely used, and
only a few of them use multiple spectral bands of Landsat time ser-
ies (Fu and Weng, 2016; Goodwin et al., 2013; Goodwin and
Collett, 2014; Zhu et al., 2016a; Zhu and Woodcock, 2014a,
2014b). Most of the studies did not use spatial information to help
with change detection, except Hamunyela et al. (2016), which used
NDVI values that are spatially normalized (sNDVI) based on differ-
ent window sizes to reduce phenological differences. They sug-
gested that by integrating this spatial information, change can be
identified with less delay. Most of the algorithms in this category
have the potential of detecting both gradual and abrupt changes,
but only Brooks et al. (2014) and Zhu et al. (2016a) demonstrated
this capability. The statistical boundary method is very computa-
tional expensive and requires large storage. However, this method
can detect change much faster and is usually less influenced by the
seasonal differences.

4.6. Regression

The regression method assumes there is a linear relationship
between predictor and response variables and uses regression to
get the answer. The predictor variables are usually the time of
the observations, and the response variables are usually the
observed values (spectral bands or indices). The main purpose of
the regression method is to estimate the long-term movements
or trends in time series, which are mostly gradual changes. All
regression studies are univariate and changes are detected in an
offline manner. Variables such as NDVI, NDWI, Soil-adjusted Vege-
tation Index (SAVI), TCT components, green vegetation fraction,
six-band discriminant index, Short-wave Infrared (SWIR)/NIR ratio,
are used as change indices. Most of the studies use pixel as the
smallest unit, except Sonnenschein et al. (2011) used green vegeta-
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tion fraction as the predictor variable (sub-pixel scale). The regres-
sion method is heavily reliant on the accurate calibration of differ-
ent Landsat sensors. Landsat sensors including MSS, TM, and ETM+
have been placed onto a consistent radiometric scale (Markham
and Helder, 2012). However, the OLI data are reported to have
some differences when compared with previous Landsat sensors
(Holden and Woodcock, 2016; Roy et al., 2016; Zhu et al.,
2016a). Moreover, Zhang and Roy (2016) found there are some
inconsistencies in the Landsat 5 NDVI time series caused by satel-
lite orbit change, while Sulla-Menashe et al. (2016) suggested that
the red reflectance from Landsat 7 is lower than that from Landsat
5, which introduces artificial long-term trends in NDVI. All fre-
quencies (low, medium, and high) have been used in the regression
method. For low and medium frequencies, seasonal changes are
the main sources of noise in trend analysis, such that images from
near-anniversary date and within growing season are preferred.
Normally, the regression method assumes there is no abrupt
change in the time series, except Vogelmann et al. (2016) consid-
ered the possibility of both gradual and abrupt changes in Landsat
time series. The regression method is relatively simple to use, but it
is mostly designed to quantify long-term trends in the time series,
and is less ideal for detecting changes that are abrupt in the Land-
sat time series. Moreover, as the regression method is highly
dependent on the consistency of different sensors, it is important
to calibrate all sensors to make sure the significant trends are sta-
tistically meaningful.
4.7. Some of the widely-used algorithms

Table 3 lists some of the widely-used change detection algo-
rithms that use Landsat time series as their inputs. The Landsat-
based detection of Trends in Disturbance and Recovery (Land-
Trendr; Kennedy et al., 2010) algorithm uses the segmentation
method to detect abrupt change (forest disturbance) and, between
the abrupt changes, a slope is fitted for each segment to capture the
gradual changes (forest recovery in this study). The LandTrendr
algorithm is an offline and univariate approach that uses NBR as
its main change index. This algorithm has been used for many
applications, such as attribution of disturbance change agents
(Kennedy et al., 2015), insect infestation detection (Liang et al.,
2014; Meigs et al., 2015, 2011; Senf et al., 2015), forest change
detection (Griffiths et al., 2012; Grogan et al., 2015; Kennedy
et al., 2012, 2010), and land cover change detection (Franklin
et al., 2015). The Vegetation Change Tracker (VCT; Huang et al.,
2010a) algorithm normalizes each Landsat image into a forest prob-
ability index called integrated forest z-score and uses the thresh-
olding method to detect forest disturbance. The VCT algorithm is
an offline and univariate method. It is mainly focused on detecting
abrupt changes in vegetation, such as forest disturbance (Chen
et al., 2013; Huang et al., 2010a, 2009; Pickell et al., 2014) and wet-
land change (Kayastha et al., 2012). Both the LandTrendr and VCT
Table 3
Characteristics of some of the widely-used algorithms.

Algorithm
Name

Temporal
Frequency

Change
Index

Univariate
Multivariate

Online
Offline

Abrup
gradu

LandTrendr Medium NBR Univariate Offline Both

VCT Medium IFZ Univariate Offline Abrup
BFAST

monitor
High NDVI Univariate Online Both

CCDC High Spectral
bands

Multivariate Online Both

NA High Spectral
bands

Multivariate Offline Both
algorithms use a medium frequency of Landsat time series, and
are capable of providing change information on an annual time-
scale. The Breaks for Additive Season and Trend (BFAST) algorithm
belongs to the statistical boundarymethod, and it was rooted in the
econometrics discipline for monitoring structural change (Chu
et al., 1995; Leisch et al., 2000; Zeileis et al., 2005). The BFAST algo-
rithm decomposes time series into trend, season, and noise compo-
nents, which makes it possible to detect abrupt change as well as
gradual change. This algorithmwas originally developed for detect-
ing vegetation change in 16-dayMODIS composite time series in an
offline mode (Verbesselt et al., 2010), and was later modified and
renamed (BFASTMonitor) to detect drought-related vegetation dis-
turbance in near real-time using MODIS time series (online)
(Verbesselt et al., 2012). Recently, the BFAST Monitor algorithm
has been applied to Landsat time series for detecting forest change
(DeVries et al., 2015; Dutrieux et al., 2015; Hamunyela et al., 2016;
Reiche et al., 2015). The BFAST Monitor algorithm uses a high fre-
quency of Landsat time series, and is a univariate (e.g., NDVI most
of the time) approach. The Continuous Change Detection and Clas-
sification (CCDC; Zhu andWoodcock, 2014a) algorithm is a statisti-
cal boundary method that uses all available Landsat data (high
frequency). It is evolved from a Continuous Monitoring of Forest
Disturbance Algorithm (CMFDA), which is designed to detect forest
disturbance (abrupt changes) based on all available Landsat data
(Zhu et al., 2012). The CCDC algorithmhas expanded the change tar-
get from forest to many land cover types and added a slope compo-
nent to detect gradual changes. To detect many kinds of surface
change, all spectral bands (multivariate) were used to define a
change; the ‘‘continuous” character makes CCDC capable of detect-
ing change as soon as new Landsat images are collected (online).
The CCDC algorithm has been used to study abrupt changes such
as land cover change (Fu and Weng, 2016; Zhu and Woodcock,
2014a), as well as gradual vegetation changes (Vogelmann et al.,
2015; Zhu et al., 2016a). Recently, Zhu et al. (2015b) made several
major updates to improve its change detection results, and Zhu
et al. (2016b) optimized the strategy for selecting training and aux-
iliary data for improving classification results. Currently, the CCDC
algorithm has been chosen as the change detection algorithm for
the USGS Land Change Monitoring, Assessment, and Projection
(LCMAP) program for generating land change products for the Uni-
ted States (Pengra et al., 2016; Zhu et al., 2016b). Hansen et al.
(2013) produced the first global map of annual forest change based
on a high frequency of Landsat time series using the multi-date
classificationmethod. This approach uses multiple Landsat spectral
bands (multivariate) and is an offline algorithm. Similar approaches
have been applied to other parts of the world, mainly for detecting
forest change (Hansen et al., 2014; Margono et al., 2012; Potapov
et al., 2015, 2012), and recently it has been modified to an online
approach for disturbance alerts in humid tropical forest (Hansen
et al., 2016). One common character of these widely-used algo-
rithms is that all of these algorithms are fully automated and are
t
al

Sub-pixel Pixel
spatial

Applications References

Pixel Forest disturbance and
recovery

Kennedy et al.
(2010)

t Pixel Forest disturbance Huang et al. (2010a)
Pixel Drought-related vegetation

disturbance
Verbesselt et al.
(2012)

Pixel Land cover change Zhu and Woodcock
(2014a)

Pixel Forest gain and loss Hansen et al. (2013)
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capable of detecting change at large scale (from regional to global)
and within a short time period (from annual to weekly). The other
common character is that many of these algorithms (i.e.,
LandTrendr, BFAST, and CCDC) are publicly available, which further
popularized the use of these algorithms.
5. Applications

Change detection based on Landsat time series has many
applications. Generally, we can divide these applications into two
categories: change target and change agent detection.
5.1. Change target

Knowing what is changing – the ‘‘change target” – is important
in change detection. By limiting changes detected within the tar-
geted land cover and use types, change can be better detected
based on thresholds and change indices that are determined and
selected specifically for the change target.

The change target is usually quite broad, which involves changes
in a variety of land cover and land use classes. Classification differ-
encing is the most widely used method (Liu and Cai, 2012;
Muttitanon and Tripathi, 2005; Nutini et al., 2013; Pillay et al.,
2014; Zhang et al., 2013; Zhao et al., 2014). There are also methods
based on spectral/index differencing (Fraser et al., 2009; Linke et al.,
2009; Vorovencii, 2014), trajectory classification (Boucher et al.,
2006; Gillanders et al., 2008; Kaufmann and Seto, 2001; Sieber
et al., 2013), segmentation (Franklin et al., 2015), and statistical
boundary (Fu and Weng, 2016; Zhu and Woodcock, 2014a).

Some change detection studies have focused on only one land
cover type. The most studies target has been forest, in which the
methods of statistical boundary (Brooks et al., 2014; Dutrieux
et al., 2015; Hamunyela et al., 2016; Reiche et al., 2015; Zhu
et al., 2012), thresholding (Chen et al., 2013; Hilker et al., 2009;
Huang et al., 2010a, 2009; Lee, 2008), multi-date classification
(Hansen et al., 2016, 2014; Margono et al., 2012; Potapov et al.,
2015, 2012; Sader and Legaard, 2008; Wilson and Sader, 2002), dif-
ferencing (Bolton et al., 2015; Hayes and Sader, 2001; Jin and
Sader, 2005; Zanotta et al., 2015), segmentation (Chance et al.,
2016; DeVries et al., 2015; Frazier et al., 2015; Griffiths et al.,
2012; Grogan et al., 2015; Hermosilla et al., 2015a; Kennedy
et al., 2012, 2010), and trajectory classification (Ahmed et al.,
2014; Sader et al., 2003) have been used. There are also change
detection studies that are mainly focusing on studying the long-
term trends of vegetation using the regression method (Latifovic
and Pouliot, 2014; Sonnenschein et al., 2011; Vogelmann et al.,
2012). Cloud can be detected based on the statistical boundary
change detection method (Goodwin et al., 2013; Zhu and
Woodcock, 2014b). Wetland change can be detected based on
regression (Fickas et al., 2016), thresholding (Kayastha et al.,
2012), and SMA differencing (Dingle Robertson et al., 2015). There
are also studies focused on changes in coral reefs (Palandro et al.,
2003, 2008), water (Li and Narayanan, 2003; Tulbure and Broich,
2013), seagrass (Dekker et al., 2005), and mangrove (Giri et al.,
2008; Giri and Muhlhausen, 2008) based on the classification dif-
ferencing method. Note that by focusing on one or a few change
targets, the identified changes are usually related to the categorical
changes for these change targets. If a change event occurred to the
change target but did not change the type of the cover (for exam-
ple, forest impacted by beetle infestation is still a forest pixel), this
change will not be identified in this kind of application. Moreover,
there is a growing trend that many more studies are focusing on a
single change target instead of many land cover/use type, due to
the benefit of choosing more precise thresholds and better change
indices for the interested change target.
5.2. Change agent

Understanding the cause of change – the ‘‘change agent” – is
also valuable in change detection. For natural changes, the agent
refers to different kinds of natural events, such as fire, insect infes-
tation, storm, flooding, and drought. For anthropogenic changes,
the agent refers to the human induced change (mostly land use
related), such as urban development, farming, logging, and mining.

Most of the change agent studies have only focused on a single
change agent, such as urban development, farming, insect infesta-
tion, fire, logging, mining, storm, and petroleum exploration/pro-
duction. For urban development, classification differencing is the
main method used to identify urban related changes (X. Li et al.,
2015; Mihai et al., 2015; Ramadan et al., 2004). SMA differencing
can also be used to quantify impervious surface change
(Cunningham et al., 2015; Powell et al., 2008). Hypothesized tra-
jectory is another approach for detecting urban growth (Xue
et al., 2014). For farming related changes, Kontgis et al. (2015) used
classification differencing to map rice paddy extent and intensifica-
tion, and Maxwell and Sylvester (2012) used multi-date classifica-
tion to map ‘‘ever-cropped” land. For insect infestation related
change, segmentation methods, such as LandTrendr have been
widely used (Liang et al., 2014; Meigs et al., 2015, 2011; Senf
et al., 2015). Coops et al. (2010) also tested using multi-date clas-
sification method to detect forest changes following insect infesta-
tion. For fire related changes, Parker et al. (2015) used spectral/
index differencing and mapped fire severity based on differences
in NBR, and Goodwin and Collett (2014) proposed a statistical
boundary method for mapping fire history. For forest logging/har-
vest related change, the multi-date classification approach is the
most common method used (Schroeder et al., 2012; Wilson and
Sader, 2002). For mining related changes, J. Li et al. (2015a) used
the thresholding method to reconstruct mining activity and
Gillanders et al. (2008) explored mining impacts on land cover
change based on the hypothesized trajectory method. For storm
related changes, Pardo-Pascual et al. (2014) used the classification
differencing method to evaluate the impact of storm on sandy bea-
ches. Unger et al. (2015) studied the impacts of petroleum explo-
ration and production on land cover based on the classification
differencing method.

Some of the studies can also detect and classify multiple change
agents. Neigh et al. (2014) detected all forest changes based on
spectral/index differencing and then used supervised classification
to separate different kinds of change agents, including logging, fire,
and insect. Kennedy et al. (2015) used segmentation method
(Landtrendr) to detect changes in NBR time series and then used
topographic data, change related information, and patch shape
index to classify many change agents, including agriculture, forest
management, natural change, and riparian. Alaibakhsh et al. (2015)
used the thresholding method (MAD); change agents, such as cli-
mate variability, fire events, and mining activity were detected
based on each of the six MAD variates. Note that by detecting
change based on its agent, we will be able to detect change even
if the land cover/use type is still the same before and after the
change event. However, for this application, we need to have good
understanding of the different change agents within the study
area. Moreover, for a long time, many algorithms were only
designed to detect a single change agent, but algorithms with the
capability of detecting multiple change agents are attracting more
and more attentions.
6. Conclusions

The free and open Landsat data distribution policy started in
2008 has completely revolutionized the way of utilizing Landsat
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data and has stimulated many novel change detection algorithms
based on Landsat time series. We have endeavored to keep
updated with all the newly published studies involving the use
of Landsat time series for change detection, but there are always
new algorithms and applications coming out, even during the pro-
cess of writing this review. Among all the studies, a general trend is
observed: the more recent the study, the higher the frequency of
the Landsat time series used. At the same time, automated image
preprocessing algorithms like LEDAPS and Fmask are being widely
used, which further facilitate the use of Landsat time series. Based
on the mathematical methods used for detecting change, we divide
all change detection algorithms into six categories, including
thresholding, differencing, segmentation, trajectory classification,
statistical boundary, and regression. Each category has its own lim-
itations and strengths, and users should understand each method
well before conducing change detection with Landsat time series.

Currently, most of the time series algorithms are heavily
focused on the temporal domain of the Landsat data, and the spa-
tial domain of the data is almost entirely neglected. More algo-
rithms that use the spatial–temporal techniques are anticipated.
Though many online change detection algorithms have been devel-
oped, most of the change detection products derived from Landsat
time series are at least one years old, which are not management
relevant. More near real-time change detection products derived
from Landsat time series are expected. The change detection appli-
cations of the Landsat time series cover a wide range of topics,
however, at present, most of the applications are limited to small
areas due to constraints of storage and computing resources. With
the advances in high-performance computing and cheaper storage,
applications based on Landsat time series at continental or even
global scale will be the mainstream in the next a few years.
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