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A B S T R A C T

A novel method called Continuous Subpixel Monitoring (CSM) was developed to map and monitor urban im-
pervious surface change continuously at the subpixel level. Time series model of each pixel was first estimated
based on clear Landsat observations between 2000 and 2014, and any land surface change was detected by the
Continuous Change Detection and Classification (CCDC) algorithm. These coefficients and Root Mean Square
Errors (RMSEs) of the estimated time series models were then employed as the inputs of random forest regressor.
A few experiments with different combinations of variables and bands were explored to better construct random
forest regression models. We successfully applied this algorithm to map subpixel urban impervious surface area
(ISA%) and characterize its dynamics in Broome County, New York. Several conclusions can be drawn from the
results and analyses. First, the integration of subpixel mapping technique and time series analysis in CSM can
yield a relatively satisfactory ISA% result at one point in time. With higher precision and smaller bias, its
mapping accuracy is better than that of National Land Cover Database (NLCD) percent developed impervious-
ness product, without using extensive auxiliary data, such as nighttime light image and transportation network.
Second, the ISA% change of any time interval can be easily derived and detected by CSM with relatively high
accuracy, which have the potential to generate sub-annual ISA% change products. Furthermore, this approach
can detect not only urban expansion/intensification (ISA% gain), but also different patterns of urban transitions
overtime, such as urban demolition/redevelopment to vegetation (ISA% loss), and surface modifications (no
mechanical change). Finally, CSM works well in one of the cloudiest regions in the United States. This algorithm
could provide a new direction to map and monitor percent urban impervious surface change in a reliable and
efficient way, which also has the potential to apply to other land cover types (e.g., tree, shrub, and barren lands)
at the subpixel level.

1. Introduction

Persisting dynamic urban changes have been taking place at an
unprecedented level since entering the 21st century. Cohen (2004) and
Seto (2009) summarized three urbanization characteristics in the past
two decades. The first is the magnitude of urbanization. As a direct
reflection of urbanization, approximately 55% of the world's population
is now living in urban areas. Over 400 cities have a population size
higher than 1 million, and 71 of them have more than 5 million in-
habitants (United Nations Department of Economic and Social Affairs;
UNDESA, 2018). Comparatively, only 16 cities had populations of 1
million or more in 1900. The second is the rapidity of urbanization,
which takes less time to increase the percentage of the global popula-
tion living in urban areas. Between 1800 and 1900, populations

residing in urban areas increased from 3% of the world's population to
14%. Only after 50 years in 1950, the percentage doubled and reached
approximately 30%. This number is projected to reach 66% by 2050
(United Nations, 2015). The third characteristic is the concentration of
urbanization with future population increase primarily in Africa and
Asia, especially India, China, and Nigeria. Growing population needs
sufficient food, water, and living space. As a consequence, natural lands
are transformed continuously into farmlands and urban lands. Although
urban areas only account for 3% of the Earth's surface (Potere and
Schneider, 2007), the urbanization process results in a series of human-
induced environmental issues. For example, the increase of impervious
surfaces remarkably degrades stream hydrology and ecosystem func-
tions, including riverine physical alternation, hydrological changes
(e.g., increasing runoff volume and peak flow, and accordingly, urban
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flooding), and degradation of water quality (Arnold and Gibbons, 1996;
Brabec et al., 2002; Center for Watershed Protection, 2003; Chabaeva
et al., 2009; Meyer et al., 2005; Paul and Meyer, 2001; Schueler, 1994;
Schueler et al., 2009; Skougaard Kaspersen et al., 2017). Also, the
growing urban impervious surfaces result in the increase of air tem-
perature as well as urban heat island phenomenon (Deng and Wu,
2013a; Weng et al., 2004; Yuan and Bauer, 2007). Moreover, as pointed
out in a recent United Nations report (2015), in addition to the trend of
increasing urban populations, declining populations in specific areas
should also be noticed, due mainly to economic contraction, low fer-
tility rate, and natural disasters. Distinct urban transitions can be no-
tably found in cities that are experiencing different migration status and
economic transformations. To better understand the impacts of urban
transformations in various cities, the very first task is to record, monitor
and analyze a complete evolution process of a city.

To accurately detect urban change and characterize urban dy-
namics, we need to better consider the spatial and temporal require-
ments. In the spatial domain, due to the nature of heterogeneity in
urban environments, more spatial details are preferable. The amount of
land available for living, business, transportation, and leisure is very
limited in urban areas, especially when the needs of human beings are
increasing dramatically. Different land uses and land covers are inter-
twined, and a variety of manmade materials are used for construction.
Mixed pixel issue is severe on satellite imagery of any urbanized areas.
Despite the availability of some high-resolution satellite data, they are
only appropriate to derive land surface information at a specific time,
and do not have a long monitoring history like Landsat which dates
back to 1970s. To take advantage of the longest continuous satellite
records with Landsat, one potential solution is subpixel mapping.
Mapping land covers at the subpixel level are generally derived by
spectral unmixing (Adams et al., 1986; Deng and Wu, 2013; Nash and
Conel, 1974; Powell et al., 2007; Roberts et al., 1998), or machine
learning methods (Coulston et al., 2013; Coulston et al., 2012; Deng
et al., 2017; Deng and Wu, 2013c; Xian et al., 2015; Xian et al., 2013;
Yang et al., 2003a). Despite the effectiveness of the proposed subpixel
mapping approaches in these pilot studies, fractional land covers using
these methods are usually obtained at one point or a few points in time
(Gao et al., 2012; Li et al., 2016; Michishita et al., 2012;
Shahtahmassebi et al., 2016; Xiam et al., 2011; Xian and Homer, 2010),
which is insufficient for documenting the complete process of urban
transitions. For example, the widely used National Land Cover Dataset
(NLCD) of the Conterminous United States (CONUS) usually update
every five years (Xiam et al., 2011; Xian and Homer, 2010), and any
change within the five year period is unknown. Another limitation of
most subpixel mapping approaches is that the estimated land cover
fractions from different time points are generally not recommended for
change detection, due to the likelihood of including compounded errors
from subpixel mapping (Zhu, 2017). Furthermore, a recent study shows
that atmospheric correction, seasonality, environment settings, and the
use of multi-temporal images also affect the accuracy of subpixel
mapping (Deng et al., 2017).

In the temporal domain, dense satellite time series has become more
and more popular for detecting land cover change. For moderate spatial
resolution satellites like Landsat, change detection algorithms are
shifting from decadal (Homer et al., 2015; Masek et al., 2008) and
annual scales (Cohen et al., 2010; Hansen et al., 2000; Huang et al.,
2010) to sub-annual scales (Brooks et al., 2014; Hamunyela et al., 2016;
Hansen et al., 2016; Zhu and Woodcock, 2014a). Compared to other
sub-annual scale algorithms that are mainly used to detect forest
change, the Continuous Change Detection and Classification (CCDC;
Zhu et al., 2015a; Zhu and Woodcock, 2014a) is capable of monitoring
a variety of land cover and land use change continuously based on
newly collected Landsat images. However, CCDC and other sub-annual
scale change detection algorithms can only provide categorical change
results (change or stable), which may not be appropriate for mapping
heterogeneous urban environments, as the aforementioned mixed pixel

issue severely affects the mapping accuracy of urban impervious sur-
face.

Although success has been respectively achieved in spatial and
temporal domains, the summarized paradox review has not been fully
solved in the literature: subpixel mapping can provide more spatial
details, but it fails to provide temporal change information, while most
of the change detection studies fail to consider the mixed pixel issue in
the urban area when using a dense stack of Landsat time series.
Therefore, the general objectives of this research are to better address
the paradox at two scales and to achieve the goal of continuous map-
ping. A method called Continuous Subpixel Monitoring (CSM) is pro-
posed in this research, which integrates subpixel mapping techniques
and time series analysis. Specifically, this algorithm aims to improve
the mapping accuracy of urban impervious surface at the subpixel level,
and to detect urban transitions by continuously monitoring with
Landsat time series. It is worth noting that the use of “continuous” in its
term implies that this method is both spatially and temporally con-
tinuous. In the spatial domain, continuous field of urban impervious
cover (0 to 100%) is estimated for subpixel mapping. In the temporal
domain, it consistently monitors urban land surface with Landsat time
series and allows the most recent image to be added in the model for
continuous monitoring overtime.

2. Study area and data

Located in Southern Tier of upstate New York and close to the
Pennsylvania border, Broome County in New York State in the United
States was used as the study area of this research (See Fig. 1). The area
size of Broome County is 1854 km2. The population of this study area is
200,600 according to 2010 Census, and it is decreased to193,639 (a
drop of 3.5%) in 2017 based on the most recent population estimates of
American Community Survey (United States Census Bureau, 2017).
Primary human settlements in Broome County include the City of
Binghamton (which is also the county seat) and its neighboring villages,
Johnson City, and Endicott. These cities and villages are also known as
Triple Cities Area. Scattered settlements can be found in the sur-
rounding suburban and rural areas outside Triple Cities Area. Typical
land covers in temperate regions appear in Broome County, including
low to high density developed lands, forests (dominated by deciduous
forests), barren lands, wetlands, pasture, and cultivated lands. Ac-
cording to the historical Census statistics (United States Census Bureau,
1995; 2001; 2017), Broome County has been experiencing a persistent
population loss since the 1970s. Therefore, this area can serve as an
example of shrinking cities in the Rust Belt in Northeastern and Mid-
west United States. Different from cities at the urbanization stage (such
as those in the Sun Belt region in the U.S. and Southeast coast in China),
urban lands in post-industrial cities can be revered to convert back into
vacant lands on which grass and trees will regrow (Deng and Ma,
2015). Examples include the demolitions of blighted properties or
brownfields, and the demolitions of building structures that are da-
maged by flood, fire, and collapse. The urban transition patterns of such
post-industrial shrinking cities have rarely been studied. Besides, we
have sufficient and abundant local knowledge. Specifically, we have a
number of local resources to obtain and validate samples, such as col-
leagues who have been living in this area for all their lives and know
this area very well, as well as local field visit to the locations. In ad-
dition, a notable challenge in our study area is the heavy cloud cov-
erage. Binghamton is one of the top 10 cloudiest cities in the CONUS.
Based on the statistics of comparative climatic observation data from
National Oceanic and Atmospheric Administration (NOAA) over the
past 44 years, on average 314 days in a year are cloudy or partially
cloudy for this region (NOAA, 2015). The severe cloud coverage sub-
stantially affects the Landsat image quality for mapping subpixel urban
impervious surface, and as a result, most of Landsat images in our study
area are contaminated by cloud and cloud free images can hardly be
found.
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All Landsat images with relatively small cloud coverage (less than
20% of the entire scene) taken between 2000 and 2014 were collected.
To derive land surface reflectance images for three different Landsat
satellites, atmospheric correction was implemented using different
tools. The Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) (Schmidt et al., 2013) was used for all Landsat 5 TM and 7
ETM+ images, while the Landsat 8 Surface Reflectance (L8SR) system
(Vermote et al., 2016) was processed for all Landsat 8 OLI images.
Overall, 165 Landsat images were downloaded from and preprocessed
by the U.S. Geological Survey (USGS) website, and their annual dis-
tribution is displayed in Fig. 2. The shapefile of Broome County was
downloaded from the website of U.S. Census Bureau, by which the
portion containing the study area was subdivided from all Landsat
images. For comparison purposes, the historical 2006 and 2011 NLCD
products of land cover classification, percent imperviousness and the
percent change from 2006 to 2011 were all collected, and partitioned to
the extent of Broome County. 2011 NLCD products are the most recent
land cover products created by USGS. With a long history which dates
back to 1992 as well as a large geographic coverage of CONUS, this
product has been widely used for a variety of applications by different
federal agencies, such as U.S. Forest Services, U.S. Department of
Agriculture, Environment Protection Agency, and name a few. Ortho-
photographs taken in 2006, 2011 and 2014 were also downloaded from
the website of National Agriculture Imagery Program (NAIP). Reference

Fig. 1. Study area: Broome County (the red polygon), New York, United States. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Temporal distribution of involved Landsat images.
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information was derived by manual interpretation and digitizing on
these aerial photographs. All datasets were re-projected to Universal
Transverse Mercator (UTM) projection (Zone 18 North) with a WGS84
datum.

3. Methodology

The proposed CSM algorithm consists of two major steps: (1) time
series model estimation and continuous change detection, and (2)
fractional land cover estimation. In this study, we used this method to
map subpixel urban impervious surface and its dynamics.

3.1. Time series model estimation and continuous change detection (CCD)

To acquire time series of clear-sky observations, cloud, cloud
shadow, and snow (unless it is perennial snow) are screened based on
Function of mask (Fmask) (Zhu et al., 2015a; Zhu and Woodcock, 2012)
and multiTemporal mask (Tmask) algorithms (Zhu and Woodcock,
2014b). The clear-sky observations are then estimated based on three
sets of Fourier series models: simple, advanced, and full models (Eqs.
1–3) (Zhu et al., 2015b). The more complex the time series model, the
better performance in modeling intra-annual differences in the time
series data will be. The simple model needs at least 12 clear-sky ob-
servations, while between 18 and 24 clear-sky observations will invoke
the advanced model, and more than 24 observations initialize the full

model. The time series coefficients are estimated based on the Least
Absolute Shrinkage and Selection Operator (LASSO) regression
(Friedman et al., 2008; 2010), with a fixed value of lambda (20). The
LASSO regression minimizes the residual sum of squared errors with a
bound on the sum of the absolute values of the coefficients, which
provides accurate model estimation without overfitting (Zhu et al.,
2015a).

= + + +i x a a cos
T

x b sin
T

x c( , ) 2 2
simple i i i i0, 1, 1, 1, (1)

where,
x: Julian date
i: The ith Landsat Band (i=1, 2, 3, 4, 5, and 7)
T: Number of days per year (T=365)
a0, i: Coefficient for overall value for the ith Landsat Band when x is

0
a1, i, b1, i: Coefficients for intra-annual change for the ith Landsat

Band
c1, i: Coefficient for inter-annual change (slope) for the ith Landsat

Band
i x( , )simple: Surface reflectance for the ith Landsat Band at x Julian

date from simple model.

= + +i x x a cos
T

x b sin
T

x( , ) (i, ) 4 4
advanced simple i i2, 2, (2)

Where,

Fig. 3. Processing of stable and changed pixels using CSM, in which time series models are shown using Landsat Band 3. Upper panel illustrates a stable pixel of
which impervious surface fraction remains f0; lower panel shows a changed pixel of which impervious surface fraction changes from f1 (between 2000 and 2007) to f2
(between 2008 and 2014).
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Fig. 4. The changes of Band 3 reflectance (first column) and NDVI (second column) of three examples. The red curve shows the modeled NDVI that characterizes
seasonality, and the blue line is the overall NDVI that minimizes seasonality. The first row is a pixel from forest to urban. The second and third are two different pixels
of surface modification with new painting. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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a2, i, b2, i: Coefficients for intra-annual bimodal change for the ith
Landsat Band

i x( , )advanced: Surface reflectance for the ith Landsat Band at x
Julian date from advanced model.

= + +i x i x a cos
T

x b sin
T

x( , ) ( , ) 6 6
full advanced i i3, 3, (3)

where,
a3, i, b3, i: Coefficients for intra-annual trimodal change for the ith

Landsat Band.
i x( , ) full: Surface reflectance for the ith Landsat Band at x Julian

date from full model. By comparing predictions from the estimated time
series model with actual observations, changes are detected if the dif-
ference is larger than a threshold six times consecutively. If no change is
detected, new clear-sky observations will be added to the time series,
and the model will be estimated again. To detect many kinds of surface
change, all spectral bands except Blue and TIR bands are used to define
a change, and the change threshold is derived by normalizing change
vector magnitude with Root Mean Squared Errors (RMSEs) from the
time series model fit for each spectral band.

3.2. Fractional land cover estimation

3.2.1. Training samples generation and variable selection for random forest
Random Forest was developed by Breiman (2001) for classification

and prediction. This method now becomes one of the most effective
machine learning approaches and is popularly used for remote sensing
images per-pixel and subpixel classification. In this research, we de-
rived 50 bagged regression trees at each decision split, of which the
prediction results were taken into consideration for the final output of
every estimate. A total of 600 random samples were initially obtained
using a stratified random sampling strategy for training purposes.
Among these samples, half of which were in Triple Cities Area and the
other half was in suburban and rural areas of Broome County. The
configuration of these random samples was matched perfectly with that
of the Landsat pixels. The urban impervious surfaces within each
Landsat pixel sample were then manually digitized on the 2014 high-
resolution NAIP aerial photograph. All digitized urban impervious
surface areas within the same individual pixel were summed. Percent
urban impervious surface was then calculated as the total sum of all
urban impervious surface divided by the size of a Landsat pixel (i.e.,
900 square meters). The input variables of random forest model are the
time series model coefficients and RMSEs of all bands from the model

fit. For each spectral band, there are eight input variables, which in-
clude one variable represent the overall reflectance value at the center
of the time series model by combining the constant (a0) and slope (c1)
coefficients (see Zhu and Woodcock, 2014a for details), an RMSE as the
indicator of model fit, and three pairs of (a total of six) coefficients to
characterize the intra-annual change (Zhu et al., 2015b). Overall, there
were 56 input variables from the seven Landsat bands (i.e., six optical
bands and one thermal band). That said, only time series model coef-
ficients and RMSEs are used as inputs of random forest, rather than
using the actual surface reflectance at a certain time. These model
coefficients reflect the overall spectral reflectance and periodic phe-
nological features of any pixel on the image. However, using too many
input variables in random forest may introduce noise in the model in-
stead of useful land cover information (Zhu and Woodcock, 2012). To
construct a better random forest model, our initial attempt was to use
all 56 variables from the seven Landsat bands as the inputs in random
forest. We calculated the variable importance, and then iteratively re-
moved variables with the smallest value of importance. The random
forest regressor with the best accuracy indicators was then selected to
map the entire study area during fifteen years. It is worth noting that,
due to the continuous nature of the time series models, the random
forest model can be applied to the fractional impervious surface esti-
mation of any pixel at any given time once the random forest model is
trained with the samples from one point in time.

3.2.2. Estimation of fractional urban impervious surface for stable and
changed pixels

Theoretically, fractional land cover at any time interval can be es-
timated in the result stack by using the trained random forest model.
For illustration purposes, we generated an annual result stack of frac-
tional urban impervious surface. A simple rule is designed to generate
the annual stack by taking into consideration the status of land cover
dynamics (see Fig. 3). For stable pixels, urban impervious surface
fraction remained consistently unchanged throughout the study period
of fifteen years, as shown in the upper panel of Fig. 3. For changed
pixels, the time of change was identified first, and the fraction in each
period was estimated, respectively. In each relative stable period, the
impervious surface fraction should remain unchanged. The result at the
year of change will be assigned with the fraction after the change, re-
gardless of the change time in this year (for instance, even it is in De-
cember). The process for changed pixels is displayed in the lower panel
of Fig. 3.

Fig. 5. Variable importance when using all the time series model coefficients of all optical and thermal bands as inputs in random forest. (For interpretation of the
references to color, the reader is referred to the web version of this article.)
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Fig. 6. Scatterplots of modeled impervious surface fraction in 2011 using (A) all eight variables (all model coefficients) per band with all bands, (B) only four
variables (overall reflectance, a1, b1, and RMSE) per band with all bands, (C) the same four variables per band with all optical bands (all bands but excluding thermal
band), and (D) the same four variables per band with only four VIR bands, and (E) from the 2011 NLCD product.
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3.2.3. Removal of surface modification without mechanical changes
Surface modification is defined as any change on urban impervious

surface but without mechanical change. That said, although urban
surface has experienced a certain type of modification which can be
detected in the first step of CCD, no impervious surface increase or
decrease actually occurs. Surface modification, therefore, should not be
considered as urban impervious surface change. Through visual ex-
amination, the examples of surface modification in our study area in-
clude tile replacement, new painting in parking lots, and new coating
on the building roofs for maintenance purposes (such as waterproofing
leak repair). According to our experiments, we found this type of
pseudo “change” with a range from 5% to 20% overtime, depending on
the number of surface modifications in an urban area. To remove sur-
face modifications, we adapted the NDVI abrupt change index (Zhu
et al., 2016). This indicator is calculated as the overall NDVI difference
before and after the change, where overall NDVI characterizes the
overall trend of NDVI which minimizes its seasonal impact (Zhu et al.,
2016). This metric can be formalized as follows.

= +A N VI NDVI| D |j start j end j, 1 , (4)

where Aj is the abrupt change index; NDVIend, j is the overall NDVI value
at the ending point in stable period j before the change; NDVIstart, j+1 is
the overall NDVI value at the starting point in stable period j+ 1 after
the change. Fig. 4 illustrates three examples in our study area with

changes detected by CCDC (including one mechanical change from
forest to urban, and two surface modifications), as well as their asso-
ciated reflectance and NDVI overtime. It can be discerned that a high
value of NDVI abrupt change is associated with a real mechanical
change, and lower ones with surface modification. A sensitivity analysis
was performed to obtain the optimal threshold, in which the producer's
and user's accuracy of changed percent urban impervious surface were
calculated following the literature (Wickham et al., 2013).

3.3. Accuracy assessment

To evaluate the performance of the proposed CSM algorithm, an-
other set of 400 random samples was generated based on the stratified
random sampling strategy. Half of these validation samples were ran-
domly selected from the changed areas that are identified by CCD,
while the other half was randomly selected from the non-changed area.
These samples of fractional urban impervious surface were manually
digitized on the 2006 and 2011 high-resolution aerial photographs,
respectively. We used these independent testing samples to assess the
accuracy of (1) the modeled fractional impervious surface at one point
in time (in 2011), and (2) the resultant percent change accuracy be-
tween two timestamps (i.e., changes of subpixel impervious surface
from 2006 to 2011 in accordance with the NLCD percent change pro-
duct). Three widely used indicators were calculated for evaluating the

Fig. 7. (A) CSM-modeled result of impervious surface abundance in the entire Broome County in 2011, and comparisons with (B) 2011 NAIP aerial photograph, (C)
2011 NLCD percent developed imperviousness product, and (D) 2011 NLCD land cover classification product.
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accuracy, including RMSE, Mean Absolute Error (MAE) and Systematic
Error (SE). The first two are used to measure the precision, while the
latter one is used to quantify estimation bias. They can be formulated as
follows.

=
=

RMSE
n

f f1 ( )
i

n

i i
1

2

(6)

=
=

MAE
n

f f1 | |
i

n

i i
1 (7)

=
=

SE
n

f f1 ( )
i

n

i i
1 (8)

where fi is the estimated subpixel urban impervious surface of sample i
using random forest; fi is the digitized fraction of urban impervious
surface of sample i from the high-resolution aerial photographs; and n is
the total number of sample polygons. To better evaluate the perfor-
mance of the proposed algorithm, these metrics are also examined in
areas with different urbanization level, i.e., low and high density de-
veloped areas using an impervious percentage of 30% as a cut-off point
(Deng, 2016; Wu, 2004). In addition, scatterplots were drawn to vali-
date the estimated urban impervious surface fraction both at one point
in time and the percent change from 2006 to 2011. This is done by

plotting the modeled fraction against the reference fraction by manual
digitizing.

4. Results

4.1. Selection of input variables in random forest

A random forest model was built by using all 56 variables from time
series model coefficients and model fits of all Landsat bands. The
variable importance of this random forest model was displayed in Fig. 5
for further variable selections. We have observed several findings as
follows. First, concerning specific input variables, overall reflectance at
the center of the time series model (hereafter, we will call it overall
reflectance for simplification) plays a vital role in this random forest
model (shown as dark blue bars). This can be supported by its ranking
in all bands (except for the SWIR2 Band), where overall reflectance
consistently ranked as one of the top three variables with the highest
importance. In addition to overall reflectance, RMSE (shown as the
yellow bars) and phenological coefficients (i.e., a1 and b1; shown as
blue and light blue, respectively) also have relatively high importance
in this random forest regressor. Comparatively, the bimodal coefficients
(i.e., a2 and b2) and trimodal coefficients (i.e., a3 and b3) are less
important in the model. The importance values of these bimodal and
trimodal coefficients (shown as green, light green, tan and orange bars,

Fig. 8. (A) CSM-modeled subpixel urban impervious surface distribution in a rural area (near the Greater Binghamton Airport) in 2011, and comparisons with (B)
2011 NAIP aerial photographs, (C) 2011 NLCD percent developed imperviousness product, and (D) 2011 NLCD land cover classification products.
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respectively) are much lower than other time series model coefficients,
and some of them in certain bands even have a negative value. This may
be explained by the fact that, unlike the phenological change of vege-
tation, the seasonality of urban impervious surface at higher fre-
quencies (i.e., the bimodal and trimodal coefficients of time series
models) is not very apparent, and it may be unnecessary to employ such
a complicated time series model. Second, with respect to specific
Landsat bands, four VIR bands (Blue, Green, Red, and NIR Bands) have
higher variable importance than other bands. As shown in Fig. 5, each
of the VIR bands has at least one variable with a relatively high im-
portance. Comparatively, despite the important role of overall re-
flectance and a1, the thermal band has two input variables with ne-
gative values. This suggests that the performance of the thermal band is
not very stable when using all coefficients of time series model. Also,
the importance values of Landsat bands 5 and 7 (i.e., SWIR 1 and 2)
seem not to be very high. It is, therefore, worth testing the model
performance without specific input variables and bands, as the inclu-
sion of them may introduce noise rather than useful information in the
random forest model. Based on the derived variable importance, we
performed three additional random forest models with different vari-
able combinations and band combinations. These include the random
forest model only with four variables (overall reflectance, a1, b1, and
RMSE) in all bands, model with the same four variables in all optical

Fig. 9. (A) CSM-modeled subpixel urban impervious surface distribution in downtown Binghamton in 2011, and comparisons with (B) 2011 NAIP aerial photographs,
(C) 2011 NLCD percent developed imperviousness product, and (D) 2011 NLCD land cover classification products.

Fig. 10. Sensitivity analysis of changed percent urban impervious surface using
different thresholds of NDVI abrupt change to exclude surface modification.
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bands (except the thermal band), and model with these four variables in
the four VIR bands.

Scatterplots in Fig. 6 illustrates the modeled fraction against re-
ference fraction. The performance of all random forest models is sa-
tisfactory, all of which have a slope higher than 0.87, an intercept less
than or close to 3%, and an R-squared greater than 0.94. Compara-
tively, the 2011 NLCD percent impervious surface product only has a
slope of 0.69, and an R-squared of 0.74 (Fig. 6E). Three accuracy me-
trics, RMSE, MAE, and SE, were calculated for these four random forest
models with different combinations of bands and variables (see
Table 1). Consistent with the findings of scatterplots, satisfactory per-
formance of the four CSM models can be reached as well, as supported
by high estimation precisions (with an RMSE of 7.5% and an MAE of
4.6%) and small bias (with an SE of 0.3%). Some interesting findings
can be observed. First, CSM models with four variables per band
(Fig. 6B, C and D) slightly outperform the CSM with all eight variables
per band. Second, when using four variables per band, the CSM model
that excludes the thermal band is slightly better than that using all
bands. This is probably caused by the different spatial resolution of the
thermal band and optical band, as well as the changing resolution of the
thermal band itself in Landsat (120m for Landsat 5, 60m for Landsat 7,
and 100m for Landsat 8). Third, among CSM models with four vari-
ables per band, the model with all optical bands and the model with VIR

bands are comparable with each other, and both are slightly higher
than the other CSM models and NLCD product. While NLCD percent
impervious surface has the best performance in low density developed
area, the underestimation in high density developed area substantially
affects the overall accuracy. In case that CSM is applied to a larger scale,
Landsat bands of SWIR 1 and 2 may include useful information in other
regions with different climates and environment settings. Therefore, we
selected the CSM model in Fig. 6C using all optical bands (including
Landsat bands 1 to 5 and 7) with four variables per band (a total of 24
variables) as the optimal CSM model for mapping fractional impervious
surface based on the following results.

4.2. CSM for urban impervious surface fraction at one point in time

The resultant 2011 subpixel impervious surface of the entire
Broome County estimated by CSM is shown in Fig. 7A. For comparison
purposes, Fig. 7B, C, and D show the NAIP aerial photograph, NLCD
percent impervious surface, and NLCD land cover classification pro-
duct, respectively. The overall pattern of the CSM estimated subpixel
impervious surface in Fig. 7A is similar to that of the three reference
datasets. Impervious surfaces are mostly clustered within Triple Cities
Area, and local transportation networks and fragmented residential
areas can be visually observed outside the core city. No apparent

Fig. 12. Percent impervious surface increase at SUNY-Binghamton: (A) 2006 CSM-modeled percent impervious surface; (B) 2006 NAIP orthophoto; (C) 2014 CSM-
modeled percent impervious surface; and (D) 2014 NAIP orthophoto.
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underestimation or overestimation is found. We further zoom into low
and high density developed areas and illustrate them in Figs. 8 and 9,
respectively. Areas with low percent impervious surface are generally
found in suburban and rural areas of the study area, such as scattered
small settlements and local roads. Although such land covers located in
urban fringes have long been challenges in urban mapping due to their
small-scale and fragmented nature (Schneider et al., 2010), they can be
precisely mapped using CSM as displayed in Fig. 8A. It is worth noting
that, unlike NLCD percent imperviousness product, no ancillary data is
used with the CSM model to assist in subpixel mapping of local roads
and small settlements, but high precision and small bias comparable to
those of NLCD product are associated with CSM (with an RMSE of 5.3%
and an MAE of 3%) (see Table 1). Comparatively, small settlements are
almost neglected in NLCD percent impervious surface data, which
cannot be observed in Fig. 8C and D. Areas with high percent im-
pervious surface (which are displayed as purple pixels in Figs. 7A, 8A,
and 9A) can be found in the downtown Binghamton and its adjacent
city centers, such as Oakdale mall in Johnson City, downtown Endicott,
and Townsquare mall as well as SUNY-Binghamton campus in Vestal.
As shown in Fig. 9A, high percent impervious surfaces cluster in
downtown Binghamton (right in Fig. 9A), and along with main street in
Johnson City and Westside Binghamton (upper left and upper center in
Fig. 9A). Table 1 shows that CSM improves not only underestimation in

high density developed areas (from an SE of −8% with NLCD to −3%
with CSM), but also precision (with an RMSE of 10.7 and an MAE of
8.6%), comparing with NLCD percent imperviousness product (with an
RMSE of 19% and an MAE of 13%). All these analyses suggest that
better subpixel estimation results can be achieved by applying CSM, as
it consistently outperforms the NLCD percent impervious surface pro-
duct.

4.3. CSM for percent change of urban impervious surface between different
years

Prior to illustrate the percent impervious surface change results, we
need to find out the optimal threshold to exclude urban surface mod-
ification from urban impervious surface change. To this end, a sensi-
tivity analysis was performed following (Wickham et al., 2013). Fig. 10
illustrates the impact of the thresholding on the change detection ac-
curacy, where change is identified only if the impervious surface area
changed (excluding surface modification). As the NDVI abrupt change
threshold increases from 0 to 0.5 with an increment of 0.05, the user's
accuracy rises and the producer's accuracy drops. The optimal threshold
can be found at the intersection of the two curves at approximately 0.1
(i.e., the balance between omission and commission errors), which is
then used as the cut-off point to reduce the impact of surface

Fig. 13. Percent impervious surface decrease in West Side, Binghamton: (A) 2006 CSM-modeled percent impervious surface; (B) 2006 NAIP orthophoto; (C) 2014
CSM-modeled percent impervious surface; and (D) 2014 NAIP orthophoto.
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modification.
In addition to deriving subpixel land cover at one point in time, CSM

can be used to yield the fractional land cover change between any two
timestamps. We further examined (both qualitatively and quantita-
tively) the impervious surface changes overtime on several typical sites
in Binghamton. Fig. 11 illustrates the complete annual percent im-
pervious surface change process on the campus of SUNY-Binghamton
between 2000 and 2014. The blue and green boxes highlight the

expansion and intensification with subpixel impervious surface increase
in 2004 and 2011, respectively. Fig. 12 displays more details of campus
developments. During the study period, SUNY-Binghamton decided to
build more modern dormitories to accommodate its increasing under-
graduate enrollments. In 2006, old dormitories, as well as the sur-
rounding lawns, can be found in the Dickinson community in the lower
circle in Fig. 12A and B. In 2014, the redevelopment finished (part of
the community was open in 2011), and the campus landscape changes

Fig. 14. (A) Detected land surface change shown as different kinds of time series models in Landsat band 3; (B) relatively small difference of overall NDVI between
two time periods; (C) and (D) New concrete coatings on building roofs in downtown Binghamton (before and after).

Fig. 15. Scatterplot between modeled and reference percent change of urban impervious surface using CSM, and scatterplot of NLCD percent impervious change
between 2006 and 2011. (For interpretation of the references to color, the reader is referred to the web version of this article.)
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include the transformation of trees to parking lots, and the demolition
of old dormitories, as well as the most recent constructions of new and
modern dormitories, which are shown in Fig. 12C and D. Later, the
university also built a new facility, the Innovative Technologies Com-
plex (ITC), as its new Engineering and Science Building. Located close
to the main campus, the ITC facility also experienced significant land

cover changes during the construction process. As shown in the upper
circle in Fig. 12, the land used to be a large lawn in 2006 (see Fig. 12B),
and grasses were completely removed and taken place by buildings and
parking lots in 2014 (see Fig. 12D). The increases of impervious surface
in magnitude on campus are appropriately characterized by using CSM.
Another important and revolutionizing feature of CSM result is that, for

Fig. 16. An example of overestimation of percent impervious surface caused by bare soil in a mining site, (A) CSM result in 2011; (B) 2011 aerial photograph; (C)
2011 NLCD percent impervious surface; and (D) 2011 NLCD land cover classification.

Table 1
Accuracy comparison of CSM models with different band and variable combinations and the 2011 NLCD percent developed imperviousness product (the best
accuracy metrics are shaded).

Band and time series 
model coefficient 
combinations

Overall areas Low density developed areas High density developed areas
RMSE 
(%)

MAE 
(%) SE (%)

RMSE 
(%)

MAE 
(%) SE (%)

RMSE 
(%) MAE (%) SE (%)

All bands (8 variables per 
band) 7.687 4.955 0.392 5.231 3.133 1.976 11.695 9.418 −3.486

All bands (4 variables per 
band) 7.371 4.687 0.216 5.043 2.913 1.726 11.183 9.031 −3.483

All optical bands (4 
variables per band) 7.324 4.642 0.430 5.352 3.019 1.894 10.716 8.615 −3.153

VIR bands (4 variables per 
band) 7.411 4.603 0.196 5.193 2.866 1.767 11.108 8.854 −3.661

2011 NLCD ISA% 10.715 4.743 −3.534 3.781 1.773 −1.438 18.998 13.015 −8.667
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pixels with no land surface change detected by CCDC, the estimated
percent urban impervious surface remains relatively stable in different
years. This is because they are estimated based on time series model
coefficients which are consistent in time, rather than based on the re-
flectance of each Landsat image. Therefore, CSM will not suffer from
the compounded errors from the post-classification comparison in de-
tecting urban impervious change.

Comparatively, another form of urban transition, urban demolition
and redevelopment, can also be found by using CSM in our study area.
Such an urban transformation pattern, however, has rarely attracted
much attention. Fig. 13 shows a representative example of the de-
creasing urban impervious surface in First Ward, Binghamton. The land
in the green circle in Fig. 12 has been left abandoned for nearly two
decades. This site used to be occupied by the former Anitec Image
Technology Corporation. The company was closed in December 1999,
and shortly in February 2000, its manufacturing facilities and buildings
were torn down. With most of the structures being demolished and
debris being cleaned later as shown in Fig. 13B, grasses gradually re-
grow on this site, which can be observed in Fig. 13D. Such a decrease of
urban impervious surface that changed from an industrial site to natural
grassland can be captured in the fraction cube as shown in both
Figs. 13A (2006) and C (2014).

Except for urban intensification/expansion and urban demolition/
redevelopment, urban surface modifications due to urban renewal can
be detected by CSM as well. This type of urban transformations may not
involve impervious surface change, and during this process, the func-
tion (or land use types) might or might not change. Examples include
renovation from industrial use to residential use due to gentrification,
or simply, building maintenance and new painting. Fig. 14 illustrates an
example of modification in downtown Binghamton. In 2006, asphaltic
roofs were discerned on several buildings, including an arena (the left
circle), a few apartments, and office buildings (the right circle). How-
ever, it appears that the roofs of these buildings have been coating
concrete as shown in 2014. Only with roof repair and preservation,
such surface modifications should not be considered as the impervious
surface change (increase or decrease). These modifications can be de-
tected and filtered by the refinement processing in CSM, as shown in
Fig. 14.

Quantitative analyses are also performed to measure the percent
change. A scatterplot was derived by plotting the reference percent
change of impervious surface by manual digitizing against the modeled
change between 2006 and 2011 with CSM. It can be discerned in
Fig. 15A that most of the plots cluster along the blue 1:1 line, indicating
that most fractional changes are well estimated. The regression model
of these plots has a slope of 1.1 and an intercept of 0.003, which also
suggests a satisfactory percent change. It is worth noting that, not only
positive change (e.g., the increase of fractional impervious surface) but
also negative change (e.g., the decrease of percent impervious surface)
are illustrated in Fig. 14A. For comparison purposes, we also created a
scatterplot of NLCD percent imperviousness change (2006–2011) by
using our manually digitized reference fraction data. Fig. 15B shows
that the NLCD percent change data does not match reference percent
change of impervious surface well. A large number of plots deviate from
the 1:1 reference line and most of the changes are not detected in the
NLCD percent imperviousness change. It is due primarily to the omis-
sion error of the impervious surface change in the NLCD product

(Wickham et al., 2013), and the producer's accuracy of NLCD percent
imperious surface change is found as low as 8%. In particular, the de-
crease of impervious surface is not taken into consideration in the NLCD
percent change product (Wickham et al., 2013), which does not reflect
all types of urban transitions. Accuracy metrics of precision and bias in
Table 2 also support the considerable improvement with CSM. Almost
all accuracy indicators are substantially improved from the NLCD per-
cent change product, regardless of gain or loss of percent urban im-
pervious surface.

5. Discussions

5.1. Comparisons with other subpixel mapping methods

One of the advantages of CSM is that it can yield a time series
fraction cube (as shown in Fig. 11) with high accuracy for mapping
fractional urban land cover at one point in time, as well as for detecting
percent change in any time interval. The accuracy metrics using CSM in
this research are comparable to, and even better than, those of previous
studies. For example, by relating widely used vegetation indices (NDVI
and SAVI) to percent impervious surface in various European cities, an
RMSE of 14% and an R-squared of 0.77 are achieved in Kaspersen et al.
(2015). Another example is the generation of annual percent im-
pervious surface in Jakarta, Indonesia with an RMSE of 20% and an R-
squared of 0.55 (Tsutsumida et al., 2016). In particular, by using the
same machine learning method in the same study area, the best RMSE,
MAE and SE are achieved at 9%, 6% and 3% respectively, as reported in
Deng et al. (2017). Compared to CSM, the only difference is the data
input with single-date or seasonal combination of Landsat images in
their work. As such, the better performance of CSM is probably due to
the temporal features extracted from time series model which can
hardly be derived from a single-date image or even seasonal combi-
nations.

In addition, percent urban impervious surface in low density de-
veloped areas can be characterized accurately in urban fringe areas by
CSM. A noticeable example is that isolated and small human settle-
ments in peri-urban areas are very difficult to detect. They are usually
mapped in summer satellite images which are carefully selected
(Schneider, 2012), or rely heavily on ancillary datasets (Homer et al.,
2004; Yang et al., 2003b). For example, NLCD percent impervious
surface product employs population density and DMSP nighttime light
data to create an urban mask, and transportation network vector data
was buffered and rasterized to generate a mask of local roads. Only
pixels located within these masks are retained as urban pixels, other-
wise, they are assumed to be rural lands with no impervious surface
(Yang et al., 2003a). Small settlements outside the these masks are
likely to be omitted due to its coarse resolution and low sensor sensi-
tivity of nighttime light data, as relatively large omission error is re-
ported in the literature (Wickham et al., 2013). This results in severe
underestimation in suburban and rural areas in the NLCD products. By
using CSM, temporal information is reflected by the coefficients and
model fits of time series models, which does not require visual ex-
amination, careful manual selection of appropriate satellite images, or
excessive ancillary data. It needs to be very cautious when using these
ancillary data sets, especially for subpixel urban land cover mapping
and change detection. However, it should be noted that NLCD has been

Table 2
Accuracy comparison of percent change of impervious surface using CSM and 2006 to 2011 NLCD Percent Developed Imperviousness Change product.

%Change in overall areas %Change in low density developed areas %Change in high density developed areas

RMSE (%) MAE (%) SE (%) RMSE (%) MAE (%) SE (%) RMSE (%) MAE (%) SE (%)

CSM 14.387 8.639 −1.346 9.485 6.162 1.984 22.476 15.848 −10.011
NLCD

ISA%
25.519 15.548 −10.304 13.732 4.764 −4.762 59.694 53.413 −52.032
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successfully applied to the CONUS in past two decades, and it is not
surprising that the accuracy in a middle-size city may be slightly lower
than its average level, as they may not have sufficient training samples
in this area. In addition to bringing more temporal information, the
time series model smooths out the noise in the images, especially high
“signal to noise” ratio may be found in those low density developed
areas.

5.2. Transferable random forest model in different timestamps

With CSM, training samples were only obtained from one point in
time (digitizing on an aerial photograph) and employed to train the
random forest model for the Landsat time series to derive the time
series fraction cube. The achieved high estimation accuracy proves the
effectiveness of the transferable random forest model. This is due
mainly to the fact that the input variables in random forest are not
image reflectance as traditional studies, but are the coefficients and
model fits of the time series models. Even when land cover changes
occur, time series models of the new land cover type remain similar to
those of the same type which are obtained from the acquisition time of
training samples. As various types of land covers have been included in
training samples, the trained random forest model, therefore, is trans-
ferable to and works well for any other timestamp. Obtaining training
data of fractional land covers is a labor-intensive task. In traditional
studies, they are usually derived by manual digitizing or classification
on high-resolution images. One approach is to obtain training samples
multiple times in different year separately. Another way is to take ad-
vantage of invariant historical training samples on other images. That
is, all historical samples need to be carefully examined to assure that no
land cover changed between the high-resolution data and Landsat
image, and any changed samples are excluded from the sample pool (Li
et al., 2015; Xian and Crane, 2005; Yang et al., 2003b). New prediction
models need to be built on every Landsat image taken on different
acquisition dates. Not only is the processing very time consuming (a
large number of images in the time series), but also it is associated with
compound errors and is not suitable for change detection (Zhu, 2017).
Both the accuracy and efficiency have been much improved by using
the transferable random forest model for the continuous mapping of
subpixel fractional land covers at different acquisition time.

5.3. Identification of different patterns of urban transformation

The CSM algorithm can automatically and accurately reflect the
status of different patterns of urban transitions. The resultant fraction
cube from CSM records the entire urban transformation process. It
provides a complete document of urban development for government
and local planning department, including the change magnitude of
fractional land cover and time of land cover change. With these spatial
and temporal details, the status of urban transitions can be identified,
including urban expansion/intensification (growth of impervious sur-
face), urban demolition/redevelopment (loss of impervious surface), as
well as surface modification (new painting or coating for maintenance
purposes while no impervious change occurs). These different patterns
of urban transitions have rarely been reported or adequately char-
acterized in the literature. Most existing studies built on an assumption
that once urban is developed, irreversible process (i.e., from urban to
natural lands) cannot take place (Song et al., 2016). Although this as-
sumption may be valid for a relatively long period, urban land covers
are not always static all the time. The assumption of irreversible urban
development does not work in a shrinking city, for example in our study
area, as well as in the large Rust Belt region in the United States where
there are a large number of brownfield or abandoned house demolitions
and redevelopment programs. Comparatively, due to the data-driven
nature of CSM, no empirical assumption is required, and any types of
urban transitions can be characterized accurately with subpixel urban
impervious surface using Landsat time series in an automated manner.

In particular, the identification of urban surface modification and its
differentiation from other urban transitions have rarely been done in
the literature.

5.4. Continuous monitoring of urban dynamics

CSM allows continuous (both spatially and temporally) monitoring
of urban transitions at the subpixel level, which has rarely been im-
plemented in the literature. As soon as the latest Landsat or Landsat-like
images are available for a study area, they can be loaded to the col-
lected long-term observations. With such a mechanism, continuous
monitoring and detection of the most recent subpixel land cover
changes in urban areas can be implemented. The use of all clear ob-
servations with Landsat time series not only increases mapping effi-
ciency by simplifying some preprocessing steps, but also substantially
improves the accuracy of change detection. Preprocessing steps in the
literature, such as careful selection of a completely cloud-free image,
and generation of a cloud-free mosaic, are not required in the proposed
algorithm. Both traditional methods require the use of all images taken
for a specific year based on several predefined criteria, which are col-
lected at the end of that year. These methods always result in a delay in
time, and cannot generate the most recent urban mapping which is
always of great necessity, especially in the fast-developing area.
Comparatively, the use of CSM can provide the latest subpixel urban
land cover dynamic information to researchers, social scientists, and
policymakers for various applied practices.

5.5. Limitations and future works

Other than the aforementioned advantages, CSM has its own lim-
itations. First, despite the aforementioned improvements, CSM does not
entirely solve the confusions between spectrally similar land covers and
urban impervious surface, resulting in the overestimation of percent
impervious surface in rural and suburban areas. In our study area,
overestimations are primarily attributed to the similar spectral-tem-
poral feature between urban impervious surface and some temporally
consistent barren lands (similar to commission errors in classification).
Fig. 16 illustrates an example of overestimation of percent urban im-
pervious surface in a bare soil pixel in a mining site. To reduce this type
of overestimations/commission errors, the easiest approach is to collect
more training data of the temporally consistent pixels with low per-
centage of urban impervious surface, as those are the pixels where CSM
struggles. We can also add a preprocessing step in the future to filter
those spectrally similar pixels. This may be done by using more training
samples for barren and urban pixels, followed by the data-driven de-
termination with CCDC land cover classification to decide the type of a
pixel. If it is determined as an urban pixel, we can use the CMS ap-
proach to estimate its fraction of urban impervious surface. With such
an additional step in CCDC, we anticipate that most of the commission
errors will be substantially removed. In terms of omission errors, we
hardly found any omission error of urban imperviousness change in our
study area. Omission error of changed pixels using CCDC can be
achieved as low as 2.3% (Zhu and Woodcock, 2014a). The high sensi-
tivity on urban change detection has also been proved in our research,
by which even urban surface modification can be identified. Based on
its high accuracy and high sensitivity, omission errors are not severe for
mapping subpixel urban change in our study area. Second, since the
input variables are based on time series models from dense time clear
observations, this method is computationally expensive and requires
large data storage. This problem needs to be better addressed, parti-
cularly for mapping percent land cover dynamics in a larger area in a
longer period. More experiments in future studies are warranted to
further improve the proposed CSM algorithm to accommodate these
limitations, and to make this algorithm more adaptive to different en-
vironments before it becomes operational for mapping large areas. In
the future, we will also explore the inclusion of the spatial domain of
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Landsat data to better identify urban extent and to separate the similar
land covers.

6. Conclusions

We developed a new method called CSM for mapping and updating
urban impervious surface at the subpixel level using Landsat time
series. We first estimated time series models for each pixel and each
spectral band based on all clear observations in the past fifteen years,
and the time series models are used to detect any land surface change.
Later, the coefficients of the time series models and RMSEs from model
fit were then employed as the inputs of random forest regressor. To
better construct random forest regression models, we analyzed variable
importance and tested different combinations of variables, and re-
commend constructing models based on four variables per band using
all six optical bands (i.e., a total of 24 variables). We have successfully
applied this algorithm to map subpixel urban impervious surface and
characterize its dynamic in Broome County, New York.

Based on the results and analyses, we made a few conclusions as
follows. First, CSM can provide subpixel urban impervious surface maps
seamlessly at any point in time by integrating subpixel mapping and
time series analysis. Second, CSM can derive subpixel urban impervious

surface change between any time interval with high accuracy, by which
sub-annual percent urban impervious surface change products can be
easily generated. The accuracy of percent impervious surface change is
much higher than that of the 2006 to 2011 NLCD percent developed
imperviousness product. Third, this approach can detect not only urban
expansion/intensification (percent urban impervious surface gain), but
also different patterns of urban transitions overtime, such as urban
demolition/redevelopment (percent urban impervious surface loss),
and urban surface modifications (unchanged percent urban impervious
surface due to no mechanical change). Finally, CSM works well in one
of the cloudiest regions in the CONUS. With the unique characteristics
of the CSM algorithm, we believe that, in addition to urban impervious
surface, CSM has the potential to map and monitor other land cover
types (e.g., tree canopy, and shrublands) in a reliable and efficient way
at the subpixel level and large scales.
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Appendix A. Appendix

Appendix Fig. 1 shows the redevelopment at MacArthur Elementary School located in Southside, Binghamton. With less than two hundred meters
from the Susquehanna River, this elementary school was destroyed by two flooding events in 2009 and 2011 due to Tropical Storm Lee and
Hurricane Irene. It was demolished in October 2013, and rebuilt on a raised site with a risk-conscious design. The school reconstruction is apparent
when comparing the resultant percent urban impervious surface between 2006 (Appendix Fig. 1A) and 2014 (Appendix Fig. 1C). The increase of
percent impervious surface can be found not only in the south but also in the north in this study area. Appendix Fig. 2 illustrates the growth of
percent urban impervious surface near Chenango Bridge in north Binghamton, due to the requirement of storage space from Broome County highway
division. During 2006 and 2014, trees and grasslands were cleared and transformed into concrete pavement for industrial storage use, as shown in
Appendix Fig. 2A and C. Overall, these examples of urban redevelopment and expansion with increasing percent impervious surface can be ef-
fectively highlighted, and for areas that have not changed, percent change of urban impervious surface is hardly observed.
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Appendix Fig. 1. Percent impervious surface increase in Southside, Binghamton: (A) 2006 CSM-modeled percent impervious surface; (B) 2006 NAIP orthophoto; (C)
2014 CSM-modeled percent impervious surface; and (D) 2014 NAIP orthophoto
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Appendix Fig. 2. Percent impervious surface increase in North Binghamton: (A) 2006 CSM-modeled percent impervious surface; (B) 2006 NAIP orthophoto; (C)
2014 CSM-modeled percent impervious surface; and (D) 2014 NAIP orthophoto
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