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A B S T R A C T

Scientific contributions from remote sensing over the last fifty years have significantly advanced our under-
standing of urban areas. Key contributions of urban remote sensing include but are not limited to character-
ization of urban areas, urban land cover changes and thermal remote sensing of urban climates. Today, the
proliferation of new sensors, long time series of the satellite record, joint analysis of Earth observation data with
ancillary data sets, widespread availability of high-performance computing facilities, and slow but increasing use
of remote sensing data and methods in non-remote sensing fields together offer new opportunities to generate
scientific knowledge for an urbanizing planet. Simultaneously, the scale and pace of contemporary urbanization
require new information about urban areas from both the science and policy communities. This paper examines
remote sensing contributions to the scientific understanding of urban areas over the last 50 years until today.
Based on this assessment and current needs by user communities, we identify four strategic directions for future
urban remote sensing research: high temporal frequency analysis, characterization of urban heterogeneity,
characterization of urban form and structure in two and three dimensions, and linking remote sensing with
emerging urban data. Advances in these four areas are likely to generate significant new insights that will be
useful to both science and policy.

1. Introduction

Urban areas are central to sustainability. They generate more than
75% of global GDP, contribute to about 75% of carbon emissions from
global final energy use, and produce approximately 2 billion tons of
waste per year (Hoornweg and Bhada-Tata, 2012; Seto et al., 2014).
Every week, the global urban population increases by about 1 million.
Every day urban areas expand by an area equivalent in size to 20,000
American football fields (Seto et al., 2011; United Nation, 2018). The
resources required to build and operate the cities of tomorrow will be
enormous, social and governance challenges aside. The world needs
scientific knowledge that can help transition society into a more sus-
tainable urban future.

The need for this knowledge has become apparent in the last few
years to governments and decision-makers, at the local, national, and

even international level. Indeed, several international agreements and
frameworks have highlighted the need for more information about ci-
ties and urban areas. For example, in 2015, more than 150 world lea-
ders adopted the 2030 United Nations Sustainable Development
Agenda, including a stand-alone Sustainable Development Goal (SDG)
to “make cities and human settlements inclusive, safe, resilient and
sustainable”. One year later, 170 countries agreed to the UN New Urban
Agenda (NUA). A central part of the NUA is recognition of the im-
portance of National Urban Policies (NUPs) as a key component of
achieving national economic, social, and environmental goals. In re-
sponse to these efforts, decision-makers are asking for more urban
knowledge from scientists that can inform policies to help create a more
sustainable urban future.

Concurrently, the evidence has been mounting on how urban sys-
tems significantly impact key components of the Earth system: the
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atmosphere, biosphere, geosphere, and pedosphere (Zhang et al.,
2013a; Zhang et al., 2013b). Beyond the environment, urban areas and
the socio-technological systems within them also have been shown to
affect many human and social issues, including health and well-being,
economic development, and social cohesion (Eckert and Kohler, 2014).
As such, a number of science communities from global change to the
health sciences are calling for more science-based knowledge about
urban areas in order to better understand a changing planet.

It is against the backdrop of these recent developments that we
assess how remote sensing can contribute to creating knowledge of our
urbanizing planet that is needed by both science and policy commu-
nities. The primary goal of this paper is to assess the key types of Earth
Observation (EO) based information that informs urban research, and at
what spatial and temporal scales. We review the literature and provide
a broad overview of the types of information that the remote sensing
community has produced to date, and suggest directions for future
urban remote sensing research that could generate significant insights
useful for science and policy communities.

2. The science we need for an urbanizing planet

Who are the research and policy communities that want urban in-
formation and what type of information do they need? How frequently
do they need this information and at what spatial scale? The United
Nations, the Intergovernmental Panel on Climate Change (IPCC),
Intergovernmental Science-Policy Platform on Biodiversity and
Ecosystem Services (IPBES), the UN Convention on Biodiversity (CBD),
and the World Health Organization (WHO) are just some examples of
the supra-national organizations that use urban information. The CBD
recently initiated the second Cities and Biodiversity Outlook, an inter-
national assessment of the threats to biodiversity from urbanization.
The IPCC recently convened its first Cities and Climate Change con-
ference, the goal being to inspire new research on how cities can mi-
tigate and adapt to climate change. The conference produced a
Research and Action Agenda on Cities and Climate Science, which in-
cludes a call for more observational data at the urban scale (Prieur-
Richard et al., 2018). The recent Global Urban Observation and In-
formation Implementation Plan for 2020–2022 identifies a range of
global scale and regional stakeholders for satellite-based urban in-
formation, including UN-Habitat, World Bank, and the EU Directorate
for Regional Policy.

Although there is much need for information that will support these
scientific and policy efforts, the majority of the scientific literature on
urban areas tends to be single case studies, with significantly fewer
studies that are comparative. A 2017 special issue of the Proceedings of
the National Academy of Sciences of the USA highlighted the lack of
comparative empirical work on urban sustainability: “…cross-com-
parative empirical work on sustainability crossing typologies of urban
areas and across different geographic regions is sparse” (Seto et al.,
2017). The special issue also highlighted the need for more solutions-
oriented fundamental science that is both place-based and spans mul-
tiple geographic and administrative scales. In a similar vein, the urban
science-policy Expert Panel for Nature Sustainability concluded that
there is a need “to forge new knowledge that corresponds to complex
urban challenges” and “to accelerate the uptake of urban science by
practitioners” (Acuto et al., 2018).

In order for urban science to be used by practitioners, however,
remote sensing scholars need to produce scientific findings that have
practical utility. Currently, the majority of remote sensing studies are
focused on methodological advancement, especially algorithm devel-
opment. Fig. 1 illustrates the number of peer-reviewed articles since
1991 in the urban remote sensing domain in the two remote sensing
journals with the highest current impact factors (Remote Sensing of
Environment and ISPRS Journal of Photogrammetry and Remote Sensing),
and a common non-remote sensing journal (Applied Geography). We
searched the archive since 1991 according to the same keywords:

‘urban’ and ‘city’, among others. In addition, in Applied Geography, we
added method-specific terms like “remote sensing”, “Earth observa-
tion”, etc. All papers were divided into two categories: 1) ‘Methods’, if
the main focus of the paper was on data (pre-) processing algorithms,
and 2) ‘Applications’, if the main focus of the paper was on geo-
graphical findings. In general, we found an uptake of urban remote
sensing studies. However, only recent studies were focused on appli-
cations, and most were published in Applied Geography. It is worth
noting that the general increase in urban scientific remote sensing
studies since 1999 was likely triggered by the advent and proliferation
of very high spatial resolution satellite sensors.

There is a growing consensus among decision-makers that more
data does not necessarily lead to better decision-making. The Nature
Sustainability Expert Panel as well as the cities IPCC research agenda
makes that clear. A lot of data being generated are not accessible either
tangibly or conceptually to the decision-making or practitioner com-
munities. Hence, it is not just a matter of providing more data points.
There is a need to provide different types of information that can be
used, interpreted or digested.

Science and policy communities are calling for more and new

Fig. 1. Number of peer-reviewed articles since 1991 in the urban remote sen-
sing domain for three selected journals.
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information about variation within urban areas and comparative ana-
lysis across urban areas. In order to understand the impact of policy, we
need benchmark data across spatial and temporal scales. This requires
information about change, changing conditions and changing outcomes
that are comparable. Although a snapshot about conditions is more
valuable than no information at all, it is clear that change information is
essential to know if we are making progress towards sustainable urban
systems and to evaluate whether policies are effective.

Moreover, urban remote sensing studies need to be focused on a
higher diversity of regions and urban area sizes. The majority of urban
remote sensing studies focus on either large cities or those located in
China, the U.S., or Europe. As one example, although data from the UN
Urbanization Projections show that most of the future urbanization will
occur in medium-sized cities of half a million to two million, 54% of
urban change detection algorithms developed since 1981 have been
developed for cities of greater than five million (Reba and Seto, in re-
view). Nearly 40% of all urban change detection algorithms were de-
veloped for China, despite the country having 19% of the world's urban
population (Reba and Seto, in review). To better inform science and
policy, urban remote sensing research must be more representative,
that is, focused on a higher diversity of regions and urban area sizes.

The science and policy communities are also calling for more har-
monized data collection and data interpretation efforts. There is no
consensus of what is urban, or at which scales comparisons are mean-
ingful, and remote sensing science can fill this gap. New methodologies
predominantly in the machine learning domain (e.g., deep learning) are
incredibly powerful ways to identify patterns of physical urban struc-
ture, but in many cases, there is limited understanding of what the
outcomes mean. An open question is whether machine learning should
be embraced as central to remote sensing applications or used cau-
tiously because of its black-box characteristics (Zhu et al., 2017).

Practitioners who are engaged in design, planning, and architecture
in urban areas also have expressed a need for more, relevant, and
spatially explicit scientific knowledge (Felson et al., 2013; McGrath,
2018; Steiner, 2014). Urban planners and designers often think, ima-
gine, create and communicate ideas and strategies for cities through
spatial visualizations (Marshall et al., 2019). The intrinsic spatiality of
EO data and their classification products contain a visual language that
can relate to the workflow of these practitioners and their concerns,
such as sustainability in cities, neighborhood revitalization, and in-
stallation of green and blue infrastructure to promote health and
manage stormwater.

In short, urban data needs to be measured across several dimen-
sions: within urban heterogeneity and across time. Urban data needs to
be consistent and harmonized for boundaries, comparable across cities
and over time. Urban data also needs to be more relevant to inform
solutions such as policy, planning and design solutions and user com-
munities such as practitioners, policymakers, and the public and private
sectors.

3. Historical developments of urban remote sensing

Urban remote sensing has been evolving consistently over the last
fifty years. With the first urban land cover maps derived from color
infrared film on hand-held camera from the Gemini and Apollo mission
in 1965 (Thrower, 1970), urban remote sensing was mostly based on
aerial photo interpretation in the early days. On July 23, 1972, the
launch of Landsat-1 (originally named Earth Resources Technology
Satellite 1), revolutionized urban remote sensing and transitioned it
from airborne to satellite remote sensing. The series of Landsat satellites
have been the “gold standard” for urban remote sensing with myriads of
applications (Donnay et al., 2014; Forster, 1983; Lo and Welch, 1977),
because of their moderate spatial resolution that is fine enough to
capture various kinds of urban developments and their long-term con-
tinuity. Since 1982, the thermal band included on Landsats 4–8 started
to provide consistent measurements of land surface temperature that

are ideal for urban heat island studies (Voogt and Oke, 2003; Roy et al.,
2014). In 1999, the launch of commercial high spatial resolution sa-
tellites (5–0.5m), such as IKONOS and QuickBird has further stimu-
lated urban remote sensing research (Bhaskaran et al., 2010; Myint
et al., 2011). These commercial satellites can provide imagery at a si-
milar spatial resolution to aerial photos, but they provide this data
routinely and with synoptic coverage of Earth's surface. Global, wall-to-
wall mapping of urban areas was not possible until the launch of the
Moderate Resolution Imaging Spectroradiometer (MODIS) sensor in
1999 (Friedl et al., 2002; Schneider et al., 2009).

Though a majority of urban remote sensing studies are based on
daytime optical and thermal sensors, there are other sensors that also
provide unique observations of urban characteristics, such as nighttime
lights sensors, LiDAR, and RADAR. Nighttime light sensors can measure
anthropogenic light at night, which corresponds with urban extents and
certain human activities (Elvidge et al., 1997). The Defense Meteor-
ological Satellite Program Operational LineScan System (DMSP-OLS)
and VIIRS Day/Night Band are the two major sensors, and the latter
provides daily observations with improved capabilities for detecting
city lights at night, especially in small and less developed settlements
(Román et al., 2018). Additionally, LiDAR system provides new mea-
surements of the three-dimension features of urban infrastructure, but
most of the studies are only based on airborne LiDAR system at the city
scale (Yu et al., 2010), with very limited studies on space-borne LiDAR
at the global scale (Gong et al., 2011). RADAR data has been used to
map urban growth since the launch of the European Remote Sensing
Satellite 1 (ERS 1) in 1991, but most of the studies are small scale
applications. Nevertheless, with more RADAR satellites launched in the
last decades (e.g., TerraSAR-X, TanDEM-X, and Sentinel-1), continental
and global scale urban mapping is emerging (Esch et al., 2012; Lisini
et al., 2018). Moreover, recent studies suggest RADAR and optical data
are complementary with each other, and the combined use of the two
can provide more accurate urban mapping results (Zhu et al., 2012).
The detailed list of civilian satellites that have been discussed in this
review for urban remote sensing is shown in Table 1.

4. Urban remote sensing contributions to environmental change
and human dimensions research

In this section, we briefly summarize major contributions from re-
mote sensing studies to knowledge about urban areas for environmental
change and human dimensions research. Because methodological ad-
vances in urban remote sensing have been covered extensively in the
literature elsewhere (Voogt and Oke, 2003; Weng, 2012, 2009; Wentz
et al., 2014), we limit this discussion to contributions to non-algo-
rithmic topical knowledge that provide measurable advances in the
understanding of key urban processes.

Urban areas are multi-spatial coupled human-environment systems.
By their very nature, urban systems link ecological, physical, and so-
cioeconomic systems across spatial scales (Pickett et al., 2001). As such,
efforts to separate them into various components or categories will al-
ways be limited, and absolute delineations of purely social or biophy-
sical are not possible. Nevertheless, for this analysis, we distinguish
between remote sensing contributions that focus more on issues of
environmental change versus those that are more human in scope, re-
cognizing that some topics, such as the built environment, span both
categories. Furthermore, we analyze various applications of urban re-
mote sensing in environmental change and human dimension research
based on the relationship of spatial resolution versus spatial scale, and
temporal frequency versus time scale, respectively (Fig. 2).

4.1. Contributions to environmental change research

Although there is a myriad of ecological processes to which urban
areas contribute, we focus here only on environmental change, defined
as change or disturbances of the environment, most often caused by
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Table 1
A list of civilian satellites discussed in this review for urban remote sensing. From is launch date, to is end of (imaging) life, (Active means the satellite or at least one
of the satellite series is still actively collecting data) Pan (Panchromatic), Optical (Optical multispectral sensor that is capable of recording in at least red and near-
infrared), Thermal, Nighttime Light, LiDAR, and SAR provide highest resolution (in meters) for sensors carried by each mission. MSS: Multispectral Scanner System;
DMSP: Defense Meteorological Satellite Program; OLS: Operational Linescan System; NOAA: National Oceanic and Atmospheric Administration; AVHRR: Advanced
Very High Resolution Radiometer; TM: Thematic Mapper; European Remote Sensing (ERS); SPOT: Satellite Pour l'Observation de la Terre; SAR: Synthetic Aperture
RADAR; ETM+: Enhanced Thematic Mapper Plus; MODIS: Moderate Resolution Imaging Spectroradiometer; ASTER: Advanced Spaceborne Thermal Emission and
Reflection Radiometer; Envisat: Environmental Satellite; ASAR: Advanced Synthetic Aperture RADAR; MERIS: MEdium Resolution Imaging Spectrometer; ICESat:
Ice, Cloud, and land Elevation Satellite; GLAS: Geoscience Laser Altimeter System; HJ: Huanjing; TanDEM-X: TerraSAR-X add-on for Digital Elevation Measurement;
TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement); Suomi-NPP: Suomi National Polar-orbiting Partnership; VIIRS: Visible Infrared Imaging
Radiometer Suite; OLI: Operational Land Imager; TIRS: Thermal Infrared Sensor; SLSTR: Sea and Land Surface Temperature Radiometer. HyspIRI: Hyperspectral
Infrared Imager.

Satellite Sensor From To Pan Optical Thermal Nighttime light LiDAR SAR

Landsat 1–3 MSS 1972 1983 79×57
DMSP F1–F19 OLS 1976 Active 560
NOAA 6–19 AVHRR 1979 2019 1100 1100
Landsat 4–5 MSS/TM 1982 2013 30 120
SPOT 1–4 1986 2013 10 20
ERS 1–2 SAR 1991 2011 30
Landsat 7 ETM+ 1999 Active 15 30 60
IKONOS 1999 2015 1 3.3
Terra MODIS 1999 Active 250 1000
Terra ASTER 1999 Active 15 90
QuickBird 2001 2014 0.6 2.4
Envisat ASAR 2002 2012 30
Envisat MERIS 2002 2012 300
Aqua MODIS 2002 Active 250
SPOT 5 2002 2015 2.5 10
ICESat GLAS 2003 2010 70
WorldView 1 2007 Active 0.5
TerraSAR X 2007 Active 1
HJ-1A 2008 Active 30
HJ-1B 2008 Active 30 300
WorldView 2 2009 Active 0.46 1.84
TanDEM-X 2010 Active 1
Suomi-NPP VIIRS 2011 Active 375 375 750
ZiYuan3 01-02 2012 Active 2.1 30 100
SPOT 6–7 2012 Active 1.5 8
Landsat 8 OLI/TIRS 2013 Active 15 30 100
Sentinel-1 2014 Active 5×20
Sentinel-2 2015 Active 10
Sentinel-3 SLSTR 2016 Active 500 1000
Luojia 1-01 2018 Active 130
HyspIRI Expected in 2022 3–5 years 60 60

Fig. 2. Spatial resolution vs spatial scale and temporal frequency vs time scale for the remotely sensed imagery that have been applied in urban areas for en-
vironmental change and human dimension research. The sizes and locations of each rectangle or ellipse are approximate values estimated based on all the papers
reviewed in this study.
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human influences and natural ecological processes. Urban areas cause
environmental change primarily through five mechanisms: 1) land use
and cover, 2) biodiversity, 3) climate, 4) hydrological systems, and 5)
biogeochemistry (Grimm et al., 2008). We briefly describe how urban
remote sensing contributes to knowledge in these five domains.

4.1.1. Land use and cover
4.1.1.1. Defining and mapping urban areas. There are nearly 200 United
Nations member states and almost every country has a different
definition of urban. Urban areas are principally a type of human
settlement, and about one hundred UN member states use country-
specific minimum population thresholds to differentiate “urban” from
other types of settlements. In addition to population thresholds, many
UN member states define urban areas as human settlements which have
a mix of built infrastructure (e.g. road, permanent dwellings, and
municipal services such as electricity), and where a significant portion
of the population engages in the non-agricultural economy. An
examination of the definitions suggests that aggregating them into a
single estimate is problematic for many reasons, including significant
differences in scale and criteria. For example, urban is defined in
Norway as localities with more than 200 inhabitants, while in Japan, it
is defined as 60,000 inhabitants plus “urban facilities” and non-
agricultural economic activities. In Nicaragua, localities need to have
at least 2000 inhabitants as well as streets and electric lights in order to
be deemed urban. Since there is no universal definition of urban,
statistics on global urban population are developed by aggregating
these vastly differing definitions, which is problematic.

Hence, one of the principal contributions of remote sensing to urban
knowledge to date has been to characterize, measure, and map urban
areas in a consistent fashion. Instead of relying on population size or
density, urban areas are mapped based on the physical characteristics of
land surface (e.g., the amount of impervious surface area or built-up
area). From satellites, some of the earliest urban insights were the use of
multispectral data to differentiate urban land cover from agriculture
and forests (Haack, 1983; Quattrochi, 1985), to discriminate urban
textures from surrounding rural areas using RADAR data (Henderson
et al., 1980; Leonard Bryan, 1975), and to estimate urban population
and densities (Kraus et al., 1974; Murai, 1974).

Today, with the routine collection of Earth observation data from a
variety of satellites, more studies are focused on mapping urban areas at
large scales (e.g., global urban area mapping), something that was
unimaginable thirty years ago. Most of the global urban maps are de-
rived from coarse spatial resolution images (300m–10 km), such as
MODIS (Schneider et al., 2009), Medium Resolution Imaging Spectro-
meter (MERIS) (Arino et al., 2008), and DMSP-OLS (Small et al., 2005;
Zhou et al., 2015). Recently, a few global urban maps have been created
with moderate to high resolution (10m–50m), including the Global
Land Cover product (GlobeLand30) using Landsat and China Environ-
mental Disaster Alleviation Satellite (HJ-1) (Chen et al., 2014), the
Global Human Settlement Layer (GHSL) based on Landsat images
(Pesaresi et al., 2016b), and the Global Urban Footprint (GUF) gener-
ated from RADAR satellite constellation of TerraSAR-X and TanDEM-X
(Esch et al., 2012). Although estimates of global urban areas vary sig-
nificantly, in part due to differences in the spatial resolution of the
imagery and the varying accuracies across the globe (Klotz et al., 2016),
these maps have been essential in building a scientific knowledge of the
direct urban imprint on Earth.

While it is easier to map urban land cover as the physical evidence
of the environment, it is more difficult to map urban land use – the
human activities on land, particularly in modern cities where buildings
often host multiple purposes and can be renovated and repurposed. The
distinction of land cover and land use is important because land cover
information relates to the natural environment of the urban system,
while land use data relates to the human dimensions. Notably, some
researchers argue for a joint human-natural structural characterization
of urban (Rademacher et al., 2019). Texture, contexture, and

proportional land cover data have been used in conjunction with
spectral data to extract urban land use information (Gong and Howarth,
1990, 1989; Gong and Howarth, 1992a, 1992b).

4.1.1.2. Urban land cover and land use change. In addition to mapping a
snapshot of urban areas at a single time point, the notion of using
satellite data to identify urban change, such as from non-urban to urban
land cover, has a long history (Howarth and Boasson, 1983; Maxwell
and Riordan, 1980). Even before the launch of Landsat 1, geographers
proposed urban change detection methods using aerial photography
(Dueker and Horton, 1972). Thus, mapping urban areas and urban land
cover change have been a fundamental contribution of remote sensing
to urban knowledge.

The international research community has been instrumental in
developing knowledge about urban areas. In particular, the inception of
the NASA Land-Cover/Land-Use Change (LCLUC) program in 1996, the
International Human Dimensions Programme (IHDP)/International
Geosphere-Biosphere Programme (IGBP)'s Land Use/Cover Change in-
ternational science project that existed from 1994 to 2005, and the
IHDP Urbanization and Global Environmental Change Project that ran
from 2005 to 2016, all helped to foster an international research
community that examines land dynamics, including urban land change,
and associated drivers and environmental and human impacts (Lambin
et al., 2006; Seto et al., 2014, 2015). Urban land systems are now an
integral part of the land system science research, a legacy that con-
tinues with the Future Earth Programme.

Remote sensing data have been used extensively to track urban
expansion (Angel and Sheppard, 2005; Taubenböck et al., 2012; Wang
et al., 2012; Zhou et al., 2018), to determine the drivers of urban land
demand (Burchfield et al., 2006), and to forecast future urban growth
(Seto et al., 2012). Since 1988, over 1080 peer-reviewed papers in
English language journals covering over 800 locations have used re-
mote sensing to detect, characterize and map urban land cover and land
use change (Seto et al., 2011). Mapping urban land cover change
continues to be a dominant component of urban remote sensing re-
search and has been essential to understanding the drivers of urban
development patterns. To date, satellite-based studies have shown that
urban expansion is driven by population and economic growth, trans-
portation infrastructure, governance and planning controls, and char-
acteristics of the natural environment (Angel and Sheppard, 2005;
Burchfield et al., 2006; Christensen and McCord, 2016; Seto et al.,
2011).

4.1.2. Biodiversity
Urbanization impacts biodiversity directly through urban expan-

sion, and indirectly through supply chains and consumption. Here we
limit our discussion to direct urban impacts on biodiversity through
land use. We discuss the insights from remote sensing of vegetation and
green space within urban areas as well as urban expansion and habitat
and biodiversity loss.

Though urbanization usually results in a reduction in biodiversity,
urban vegetation, and green space can also play a vital role in sup-
porting biodiversity by providing wildlife migration corridors or by
acting as refuges for native biodiversity (Goddard et al., 2010). Ad-
vanced information on urban vegetation condition and green space
distribution can assist planners in designing strategies for the optimi-
zation of urban ecosystem services and biodiversity conservation. Re-
mote sensing is of great value in monitoring the condition of urban
vegetation and mapping the spatial distribution of urban green space.
Such studies are most often carried out at moderate scales, with a
spatial resolution of 30m (Small, 2001; Zhu et al., 2016). It has been
demonstrated that finer resolutions are required to assess urban green
space more comprehensively, since coarse imagery would miss small
patches of vegetation (Qian et al., 2015). Habitat fragmentation is one
of the most important concerns about urban expansion. Agricultural
and pastoral lands, as well as production and native forests, remnant
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grasslands, and deserts, are threatened by urban land conversion. At the
coarse scale, fragmentation in these productive, biodiverse, and native
habits is readily detected by remote sensing (Skole and Tucker, 1993).
Additionally, biodiversity as a concept has several dimensions. It ad-
dresses heterogeneity from the genetic to the landscape levels of or-
ganization. Most often in discussions of urban biodiversity, it is the
species level that is of concern. Although the current satellite remote
sensing systems are still too coarse to discriminate among species, they
are increasingly feasible for mapping certain aspects of biodiversity,
such as distinguishing species assemblages or diversity patterns (e.g.,
richness) (Alonzo et al., 2014; Bino et al., 2008; Goetz et al., 2007;
Lawes and Wallace, 2008; Pu and Landry, 2012; Turner et al., 2003;
Xiao et al., 2004).

4.1.3. Climate
Urbanization may profoundly affect climate locally, and even

globally, by land cover conversion, increasing impervious surface, an-
thropogenic heat discharge, and greenhouse gases emissions (Chen
et al., 2006; Wakode et al., 2018; Xiao et al., 2007; Zhou et al., 2012).
These land surface processes that occur at the interface between the
Earth's land and atmosphere are complex and influence the climate
system at different scales (Gluch et al., 2006). One of the most im-
portant effects in climate induced by urbanization is the Urban Heat
Island (UHI), referring to the temperature differences between urban
and surrounding rural areas (Oke, 1982, 1973; Roth et al., 1989).
Biogeophysical parameters of urban land surface cover and temperature
from satellite observations are of great value for investigating urban
surface energy budgets, and therefore improving the understanding of
urbanization impacts on local and global climate.

With the advent of thermal remote sensing satellites, we are able to
observe UHIs at large spatial scales and understand their primary causal
factors (Voogt and Oke, 2003; Weng, 2009). Since the first UHI study by
Rao (1972), a variety of remote sensing platforms and sensors have
been used, of which Advanced Very High Resolution Radiometer
(AVHRR) (Gallo and Owen, 1998; Kidder and Wu, 1987; Streutker,
2002), MODIS (Li et al., 2017; Meng et al., 2018; Schwarz et al., 2011),
Landsat (Carnahan and Larson, 1990; Kim, 1992; Weng et al., 2004),
and Advanced Spaceborne Thermal Emission and Reflection Radio-
meter (ASTER) (Kato and Yamaguchi, 2007; Nichol et al., 2009;
Tiangco et al., 2008) are the four most important sensors. Airborne data
have also been widely explored in UHI studies (Ben-Dor and Saaroni,
1997; Jenerette et al., 2016). Although the coarse resolution data from
AVHRR and MODIS are particularly useful for mapping urban tem-
perature over large areas, they are not ideal for establishing meaningful
relationships with ground measurement. Rather, moderate resolution
data with spatial resolutions ranging from 60 to 120m (e.g. Landsats
4–8), are more suitable to study UHI at regional scales. Studies that
have used data at these scales have found that the Land Surface Tem-
perature (LST) products derived from Landsat images can better reflect
the spatial variation of LST, which is of great potential for study areas
with high spatial heterogeneities. High spatial resolution imagery from
airborne remote sensing systems have also been used to extract tem-
perature from specific urban surfaces for analysis (Ben-Dor and Saaroni,
1997; Eliasson, 1992; Gaitani et al., 2017).

There is well-developed literature that uses large scale thermal re-
mote sensing data to explore how urban biophysical factors relate to
LST. These biophysical parameters extracted from satellite observations
include land use and land cover type (Amiri et al., 2009; Li et al., 2009),
vegetation indices (Gallo et al., 1995), subpixel vegetation abundance
(Weng et al., 2004), subpixel impervious surface fraction (Imhoff et al.,
2010; Yuan and Bauer, 2007), and landscape compositions and com-
binations (Li et al., 2011; Zhou et al., 2011). Studies have found that
LST is usually negatively related to vegetation indices (e.g. NDVI), and
positively correlated with urban land cover indices (e.g. impervious
surface area). Instead of the traditional binary interplay between LST
and a single spectral indicator, UHI is better modeled and explained as

multiple interplays between LST and various land biophysical compo-
sitions with different thermal properties (Deng and Wu, 2013a). From a
modeling perspective, LST is a product of the surface energy balance,
and the physical basis of spatial variation in LST is the response to the
factors that affect surface energy balance. These small spatial scales
measurements can be made using ground or airborne thermal remote
sensing. Therefore, the issue at the satellite scale is that much of the
spatial variability of surface temperature is still at subpixel scale (mixed
with issues related to emissivity and sensor viewing geometry). In ad-
dition to examining the direct association between LST and urban
biophysical factors, surface UHI intensity, magnitude, and spatial extent
have also been modeled as continuous functions (Rajasekar and Weng,
2009a, 2009b; Streutker, 2003, 2002).

New insights on urban climate are emerging in the remote sensing
community, enabled by new data, new sensors, and new algorithms.
First, remotely sensed big data (especially time series) has created the
potential to depict and analyze UHI over time. Using these time series,
the relationship between LST increases and urbanization can be de-
termined (Fu and Weng, 2016). Also, because of the sensitivity of urban
vegetation to urban climate change, long term time series satellite ob-
servations can be used to compare the annual vegetation phenological
transition dates in urban areas to quantify the impacts of urbanization
on urban climate (Zhang et al., 2004). Other new data, such as volun-
teer geographic data on weather websites, have been collectively used
with remote sensing data for urban climate studies (Ho et al., 2014).
Second, new sensors are emerging that can provide more spectral fea-
tures or more frequent time series of urban climate variables. Two or
more thermal bands are known to be able to provide more accurate
estimation of land surface temperature and emissivity in urban areas
(Wan, 1996). However, most of the current satellite sensors are either
without any thermal band or only have a single thermal band. The
Sentinel-3 Sea Land Surface Temperature Radiometer (SLSTR) that was
launched in 2016 has three thermal bands for better estimates of land
surface temperature (Donlon et al., 2012). The Hyperspectral Infrared
Imager (HyspIRI) which will be launched in 2022 has eight thermal
bands between 3 and 12 μm (Lee et al., 2015). Moreover, recent studies
have explored the use of new geostationary satellites to create hourly
land surface temperature at a similar spatial resolution to that of
Landsat, which greatly improves our understanding of the spatio-
temporal dynamics of urban thermal environments (Quan et al., 2018).
Finally, new algorithms are being developed that improve on the low
temporal frequency of existing moderate resolution thermal data by
modeling of diurnal and annual time series that couples equations with
remotely sensed data. For example, algorithms that are able to simulate
daily or even hourly Landsat thermal images by using data fusion have
been developed (Gao et al., 2006; Liu and Weng, 2012; Quan et al.,
2018; Zhu et al., 2010).

4.1.4. Hydrological systems
Urban land cover and land use, especially urban form, have ex-

tensive impacts on hydrological processes such as surface runoff and
infiltration in urban systems. The geometry of road networks, the
height of buildings or infrastructure, and the configuration of pervious
and impervious surfaces, have notable impacts on the flow vector and
water depth during the surface runoff process in urban areas (Vojinovic
et al., 2011; Yu and Coulthard, 2015), particularly during flooding
events.

Recent innovations in this area include the use of SAR data to map
flood dynamics and hydrologic characteristics such as channel and
floodplain connectivity (Schumann et al., 2011). Satellite data can
provide near real-time and cost-effective data for estimating storm-
water runoff, urban floods, and other hydrological changes. SAR data
can provide near real-time flood water levels that are closely correlated
with data collected from gauges (Mason et al., 2012). The causes and
propensity of urban-induced rainfall have also been explored, using
remotely sensed imagery (Shepherd, 2005). These insights have
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important implications for post-disaster response, hazards manage-
ment, and disaster risk reduction. Moreover, satellite-derived estimates
of effective impervious surface area is an essential indicator for urban
runoff and floods (Ebrahimian et al., 2016).

In addition to SAR, high resolution satellite data can provide finely
resolved terrain information that is invaluable for modeling urban flood
inundation. Although high resolution terrain data have been generated
for rural and large floodplain areas for some time, urban areas present
unique challenges due to the built-up infrastructure and small spatial
dimensions of roads. Airborne LiDAR data have been used to estimate
urban vertical structure with height accuracies in the range of 10–15 cm
Root Mean Square Error (RMSE), which is sufficient for urban flood
modeling (Schubert et al., 2008).

There is a strong correlation between urban development, urban
subsidence and urban flooding (Abidin et al., 2011). As such, having
information about subsidence can assist in the modeling of urban
floods. InSAR data have also been used to quantify subsidence in urban
areas (Crosetto et al., 2003; Raucoules et al., 2013).

4.1.5. Biogeochemistry
Although biogeochemistry is a key component of urban ecosystems

(Kaye et al., 2006), assessments by remote sensing are largely absent.
Most remote sensing assessments of biogeochemical parameters such as
productivity and productivity potential, or concentrations of nutrients
in the system of interest have not addressed urban systems. Rather they
have been applied in large, contiguous areas of non-urban aquatic
marine, or terrestrial habitats (Asner and Vitousek, 2005; Schimel,
1995). A few studies have tried to model the carbon cycle of urban
systems based on light use efficiency model and coarse resolution re-
motely sensed data from AVHRR (Imhoff et al., 2004; Zhao et al., 2007)
and MODIS (Milesi et al., 2003). Different urbanization impacts on the
carbon cycle have been reported, where both Imhoff et al. (2004) and
Milesi et al. (2003) suggested that urbanization had a large negative
impact on net primary productivity, while Zhao et al. (2007) indicated
that the region-wide increase in tree cover in urban areas actually in-
creased regional gross primary production. A more integrated evalua-
tion of the most prominent impacts of urbanization and finer spatial
resolution of satellite images are needed for better understanding of
urbanization impacts on the carbon cycle.

Considering that the carbon cycle is just one of the many processes
in urban biogeochemistry and the relevant studies using remote sensing
data are very limited, there is a great need for remote analysis of urban
biogeochemistry. We think future research should use higher spatial
resolution remotely sensed data and include fine and medium scales
(e.g., Landsat and Sentinel-2 data) at which ecosystem process are
measured in watersheds and in the various terrestrial habitat types
found in and around cities.

4.2. Contributions to human dimensions research

Remote sensing is a powerful tool in a wide variety of human di-
mensions research. Due to its high spatial and temporal resolution and
global availability, remote sensing data is a complement to demo-
graphic, social, economic, and health surveys that are sparse and dif-
ficult to obtain, and often limited in geographic coverage. Here we
discuss the key insights of urban remote sensing data to human di-
mensions research, focusing on health, economic activity, and equity.
We organize the discussion around the main topics where satellite data
have been applied and the key remote sensing contributions to each
area.

4.2.1. Health
Urbanization impacts health directly both through the natural en-

vironments that are altered and the urban environments that are built,
and indirectly through the way urban environments shape human be-
haviors. Insights from remote sensing on monitoring these impacts are

organized around three types of pathways: how urban environments
affect the prevalence and spread of infectious diseases, how they in-
fluence environmental exposures that lead to non-communicable dis-
ease or mortality risks, and how they shape human behaviors and life-
styles.

4.2.1.1. Infectious diseases. Infectious diseases can be caused by various
biological agents, such as bacteria, viruses, parasites or fungi, and can
be spread between people either directly or indirectly. Though the
agents that cause many infectious diseases are not unique to urban
areas, urban environments can shape the breeding ground of disease-
carrying vectors and can influence interactions between vectors and
human hosts (Goodman et al., 2018; LaDeau et al., 2015), or human
hosts with each other. Urban remote sensing of the study of infectious
diseases has therefore revolved around three topics: (1) understanding
the distribution of disease vectors; (2) mapping urban environments
that increase disease risk; and (3) understanding disease transmission
within urban areas.

While remote sensing has been used extensively to map the en-
vironmental attributes that influence the reproductive rates and dis-
tribution of a wide variety of disease vectors, studies with an urban-
focus are almost entirely limited to research on mosquitos. Mosquitos
are the primary vector of dengue, yellow fever, Zika, and malaria, and
controlling them within urban areas is a policy priority for many de-
veloping cities. Recent research in Argentina (Albrieu-Llinás et al.,
2018), the US (Hartfield et al., 2011; Liu and Weng, 2012), and parts of
Africa (De Castro et al., 2004; Kabaria et al., 2016) have used high
resolution imagery, and sometimes LIDAR, to monitor environmental
variables for prediction of mosquito distribution and creation of prob-
ability maps. These types of studies have also shown how the same
environmental conditions that cause urban heat islands can cause an
increased incidence of mosquito-borne diseases. In Sao Paulo, for ex-
ample, urban heat islands, mapped with land surface temperature data,
were shown to have more dengue cases (Araujo et al., 2015). Risk
distribution studies aim to provide urban decision makers with the in-
formation they need to try to control mosquito populations and miti-
gate outbreaks.

Other studies have focused on disease risk associated with the
quality of urban built environments. It is estimated that about one out
of three urban residents live in a slum or informal settlement, where the
combination of high levels of poverty, dense housing, inadequate sa-
nitation and waste collection, and poor drinking water supply con-
tribute to high levels and rapid transmission of infectious disease.
Understanding the urban mechanisms underlying infectious disease
transmission is essential for early warning systems and control. Remote
sensing has shown promise for slum mapping by differentiating be-
tween textures of formal and informal built environments (Kuffer et al.,
2016; Wurm et al., 2017). These contributions can help identify com-
munities for targeted interventions.

In addition to mapping the distribution of risk, urban remote sen-
sing has been combined with demographic data to understand how
human populations have interacted with disease vectors, and with each
other to influence epidemic progression. One study tracked human
seasonal population migrations in and out of urban areas in Niger using
a time series of night-time light satellite images and found that these
spatiotemporal changes in population density were associated with
measles outbreaks (Bharti et al., 2011). Another study that mapped the
temporal changes of malaria transmission risk in Dakar, Senegal found
that urbanization decreased the risk of malaria transmission (Machault
et al., 2010).

4.2.1.2. Environmental exposure and non-communicable diseases. Though
less developed, there is a growing literature on the impact of
environmental factors, measured with remote sensing data, on non-
communicable diseases such as diabetes, obesity, heart health, cancers,
and asthma, which are prevalent in urban environments. Though areas
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with high urbanization levels have been linked to a higher prevalence
of chronic disease in recent decades (Li et al., 2012), the causal
mechanisms are often less clear.

One mechanism, air pollution, is a common problem in many ur-
banizing areas that has been linked to several chronic diseases. Because
of the absence of networks of ground-based indicators of particulates in
some parts of the world (Engel-Cox et al., 2004; Schaap et al., 2009),
the demonstrated relationship between aerosol optical depth (derived
from MODIS) and standard particulate measures has proven a useful in
epidemiological exposure assessment studies (Brauer et al., 2012;
Jerrett et al., 2017; Kloog et al., 2011; Kumar et al., 2007; van
Donkelaar et al., 2010; Wang and Christopher, 2003). However, be-
cause MODIS satellite observations only date back to 1999, satellite-
based studies are limited in their characterizations of long-term changes
in PM 2.5 (Butt et al., 2017).

Along with air pollution, the greenness of urban neighborhoods
(measured in remote sensing as NDVI) has been linked to cardiovas-
cular disease (Pereira et al., 2012). Urban light pollution, measured
with night-time light satellites data has been shown to correlate with
breast cancer (Kloog et al., 2010) and cardiovascular disease (Lane
et al., 2017). Pollen released by vegetation in the urban and suburban
area (measured in remote sensing as vegetation phenology) is the most
important factor for respiratory allergies (Li et al., 2019a).

In addition, the health impacts of climate change are likely to be
severe in urban areas because of the high concentration of people and
infrastructure in one place. In the Carbon Disclosure Project's 2017
survey of leaders from 478 global cities, over half of respondents ex-
pected climate change to seriously compromise their public health in-
frastructure (Watts et al., 2018). Remote sensing is increasingly being
used to understand the exposure of urban residents to hazards like
extreme weather events, sea level rise, heat waves, flooding and land-
slides, associated with climate change. For instance, high resolution
AVHRR and SPOT imagery were used to analyze the spatial variations
in land surface temperature during the 2003 Paris heat wave that
caused 4867 deaths (Dousset et al., 2011). Satellite-based emergency
mapping, using SAR, VHR optical imagery, and thermal imagery was
critical in major disaster events like the 2004 Indian Ocean Tsunami
(Voigt et al., 2007), the Wenchuan Earthquake of 2008 (Tong et al.,
2012), the Haiti earthquake in 2010 (Duda and Jones, 2011), and the
Pakistan flood of 2010 (Gaurav et al., 2011). Recent disaster assess-
ments have also included the use of night-time light sensors–tracking
power outages from earthquakes, floods, and storms (Zhao et al., 2018),
as well as long-term power restoration protocols after storms (Román
et al., 2019).

4.2.1.3. Behaviors and lifestyles. There is additional epidemiological
literature that has linked characteristics of urban environments with
daily health habits, like physical activity (Sallis et al., 2016; Feng et al.,
2010), dietary behaviors (Seto and Ramankutty, 2016), sleep (Carta
et al., 2018), and access to health care (Sibley and Weiner, 2011;
Caldwell et al., 2016). Measures of urban structure, such as street
intersection density, land use mix, population, and housing unit density
have all been positively associated with physical activity (Sallis et al.,
2016; Feng et al., 2010; Saelens et al., 2003; Troped et al., 2010).
However, few studies have used remote sensing data to measure these
attributes of the urban built environment, more often relying on GIS or
survey data.

4.2.2. Economic activity
Scholars have long been interested in the ability of remote sensing

data to proxy economic activity. To this end, night-time light captured
by the DMSP-OLS, has become commonly used proxies for local eco-
nomic activity, since they reflect variation in population density (e.g.
Sutton et al., 2001), energy use (e.g. Amaral et al., 2005), and infra-
structure development (e.g. Imhoff et al., 1997). In cross-sectional
studies, night-time light has been shown to correlate strongly with

economic activity (Doll et al., 2000; Sutton and Costanza, 2002; Xin
et al., 2017). As a thirty-year panel dataset, change in lights has also
been used to approximate change in GDP growth, with a lights-GDP
elasticity of 0.28–0.32 (Henderson et al., 2011).

Nightlights data have two main advantages for approximating
economic activity and economic growth that are complementary to
traditional measures. First, night-time light data is global in scope,
whereas traditional economic data is difficult to assess for countries
with low-quality statistical systems in place. Night-time lights have
been used to estimate economic activity primarily in countries where
data is sparse (Lee, 2018; Michalopoulos and Papaioannou, 2014).
When included with traditional measures of GDP, nightlights improved
the measurement of economic output in areas that had inferior statis-
tical collection systems but added little information for areas with high-
quality economic data available (Deville et al., 2014; Nordhaus and
Chen, 2015). The second advantage is the fine spatial resolution of
night-time light data, compared to conventional economic data, which
is most often reported at the national level. Since sub-national data is
typically unavailable, night-time light can be used to create a dis-
aggregated map of economic activity (Ghosh et al., 2010), with lights as
the means of proportionally allocating the national GDP. Downscaled
proxies of national economic activity have been used in research about
the determinants of variation in economic activity across cities (Florida
et al., 2012), subnational administrative regions (Hodler and Raschky,
2014), and grid cells (Henderson et al., 2017). The launch of a new
Day/Night Band on the Visible Infrared Imaging Radiometer Suite
(VIIRS) with higher spatial, radiometric, and temporal resolution
(Román et al., 2018; Román et al., 2019) presents a new opportunity to
expand on previous efforts for using night-time light to understand
economic activity.

Beyond night-time lights, the concentration of the built environ-
ment derived from passive or active sensors has been used to map and
understand economic activity. At the continental scale city networks
measured by settlement density are shown as a well-suited proxy for
revealing economic disparities (Taubenböck et al., 2017a, 2017b). At
the city scale, the specific characteristics of settlement structures, such
as morphological slums, are also a proven proxy for the economic
capabilities of a social group (Wurm and Taubenböck, 2018).

4.2.3. Equity
Though urban areas are sites of concentrated innovation and op-

portunity, they are also increasingly sites of concentrated poverty and
inequality. Very high resolution optical satellite images have been used
successfully to identify qualitative aspects of the built environment that
identify informal housing (Kohli et al., 2012; Kuffer et al., 2016; Owen
and Wong, 2013; Taubenböck and Kraff, 2014) and concentrated pov-
erty. However, since morphologic forms of poverty vary significantly
across the world (Taubenböck et al., 2018), detecting slums based on
built-up characteristics in EO-data capture only one aspect of poverty. A
combination of DMSP-OLS nighttime imagery with high-resolution
Google Static Maps imagery were used to estimate household con-
sumption and assets in five African countries—Nigeria, Tanzania,
Uganda, Malawi, and Rwanda—all of which lack high resolution in-
come data (Jean et al., 2016). In addition to mapping informal settle-
ments, nightlights images have provided a new dataset for assessing
energy poverty. Studies using DMSP have demonstrated the capability
of night-time light to track rural electrification efforts in developing
countries (Doll and Pachauri, 2010; Min et al., 2013; Min and Gaba,
2014). However, at present, these studies have only considered elec-
tricity access as a binary—whether there are lights or not. At higher
resolution, Kuffer et al. (2018) have used night-time light data taken
from ISS Astronauts to highlight the lower light emission in slum areas
compared to formal settlement areas. In addition, electrification and
infrastructure-poor development within urban areas have been identi-
fied by considering time series data from the VIIRS Day Night Band,
land cover records, and population datasets together (Stokes and Seto,
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in revise). Capturing a more nuanced picture of the gradients of energy
poverty and access could be a promising future direction of remote
sensing research.

5. Strategic directions for urban remote sensing research

Improving the scientific understanding of urban areas in a rapidly
changing and urbanizing world requires four key advancements (Fig. 3).
First, the rapid rates of urban change require high frequency observa-
tions as well as a long temporal record. Second, urban environments
vary significantly around the world as well as within particular cities,
and there is a rich array of urban features and dynamics that might be
better assessed by remote sensing. Third, the details of urban form and
structure, the urban surface, and across the vertical dimension must be
better and more widely known. Finally, linking remote sensing with
emerging urban data that reflects the ecological, social, and economic
processes of urban areas is urgently needed. We discuss these distinct,
but related topics in this section.

5.1. High frequency analysis of urban environments

Unlike forests that can change frequently, urban environments are
generally assumed to be a relatively stable land type (Mertes et al.,
2015). Therefore, historically, urban areas were mapped at a time in-
terval of 5 to 10 years apart (Seto et al., 2002; Xian and Homer, 2010;
Yuan et al., 2005). However, in reality, urban environments are highly
dynamic and can undergo many qualitative and subtle changes for

which high frequency observations would generate significant new in-
sights (Li et al., 2018). High temporal frequency analysis for urban
remote sensing has become an emerging trend with the improvements
in satellite technology (Schott et al., 2016), the open data policy (Zhu
et al., 2019a), and application of methods from allied fields, such as
geostatistics (Boucher et al., 2006), time series methods (Kaufmann and
Seto, 2001; Zhu, 2017), among others. Nevertheless, the use of high
frequency satellite data did not become the frontier of research until the
Landsat data were provided free of charge after 2008 (Woodcock et al.,
2008; Wulder et al., 2012; Wulder et al., 2019; Zhu, 2017; Zhu et al.,
2019a), enabling new capabilities for mapping urban impervious sur-
face area at annual time scales (Gao et al., 2012; Li et al., 2015; Sexton
et al., 2013; Zhang and Weng, 2016). These newly developed ap-
proaches reveal the full continuum of change intensity of urban areas,
including acceleration of urban growth and other nonlinearities in time,
that the former approaches with low temporal frequency observations
could not provide.

Mapping urban or urban impervious surface annually has improved
knowledge about rates and patterns of urbanization. Nevertheless,
considering the extremely dynamic character of urban environments,
the capability of detecting urban change at sub-annual scale could il-
luminate different insights on urban development. This requires sa-
tellite observations with even higher temporal frequency (e.g., weekly
or monthly), which will enable remote sensing applications for mon-
itoring urban disturbance events that are usually transient in time,
detecting subtle or gradual urban changes, and providing relevant near
real-time information for urban response and management.

Fig. 3. Four major strategic directions for urban remote sensing research.

Z. Zhu, et al. Remote Sensing of Environment 228 (2019) 164–182

172



Unlike ecosystem disturbance, urban disturbance has been rarely
studied. Grimm et al. (2017) defined urban disturbance as an event that
disrupts any aspects of the structure of an urban system as specified in
an explicit model, such as land cover and land use change, human ac-
tivity, soil disturbance, and hazards/disasters (e.g., fire, heatwaves,
flood, windstorms, and earthquakes). Most of these urban disturbances
will only occur for a relatively short time, and this signal can be easily
buried in annual time series. Though there are studies that use high
temporal frequency time series for urban remote sensing, they either
select the best observation per year or create an annual time series
trajectory to map annual urban change, which would miss many urban
disturbances or signals that occur seasonally. Moreover, most urban
disturbances do not cause changes in urban area or impervious surface
area, and are thus “invisible” to algorithms designed for mapping im-
pervious surface area. For example, urban land surfaces can be highly
dynamic, with frequent surface modifications caused by human activ-
ities, but with stable aggregate amounts of impervious surface area
(Deng and Zhu, 2018). If we only focus on impervious surface area, all
this disturbance information will be lost.

In addition, subtle and gradual qualitative changes, such as up-
grading of the built environment, frequently occur in urban environ-
ments. Due to their small change magnitude, methods that select one
image per year during the peak growing season are not able to capture
these changes, since the magnitude of change can be smaller than the
environmental and systematic noise in the imagery. Using high tem-
poral frequency observations, remote sensing data can isolate “noise” in
the time series, such as differences caused by urban vegetation phe-
nology, solar angle change, inter-annual condition trends, and other
predictable periodical and long-term changes (Zhu and Woodcock,
2014; Zhu et al., 2019b). With all those sources of “noise” excluded,
subtle and gradual changes in urban environments can be identified
more easily (Zhu et al., 2016). Moreover, with high temporal frequency
observations, seasonal changes, which have caused dramatic changes in
impervious surface area estimation and urban land cover classification
(Deng et al., 2017; Zhu et al., 2012), can be estimated, modeled, and
corrected (Deng and Zhu, 2018).

Near real-time monitoring of urban change is critical for raising
quick awareness and reducing negative impacts in urban environments.
At present, most urban change detection algorithms and products can
provide accurate urban change maps, but usually, there is a substantial
lag (a few years) between the time when the urban change occurred and
the time when the change is detected. This delay in detection will
greatly reduce the impact of change maps as they lose relevancy for
response and management efforts. High temporal frequency observa-
tions are essential for near real-time response applications, such as
mapping and evaluating urban fires, heatwaves, floods, windstorms,
earthquakes, etc. For example, by combining Sentinel-2A/2B and
Landsats 7–8, near real-time monitoring (3-day delay) of urban change
at sub-30-meter resolution is possible.

Near real-time monitoring also requires change detection algo-
rithms that are online. COntinuous monitoring of Land Disturbance
(COLD: Zhu et al., 2019b), Continuous Change Detection and Classifi-
cation (CCDC; Zhu and Woodcock, 2014), and Break detection For
Additive Season and Trend (BFAST; Verbesselt et al., 2012) algorithms
are three examples of methods. Note that COLD, CCDC, and BFAST are
not specifically designed for monitoring urban change. COLD is de-
signed for monitoring all land surface disturbances, CCDC is designed
for monitoring all land cover types, and BFAST is designed for mon-
itoring vegetation change. Similar methods that focus on monitoring
urban change in near real-time are needed. The Continuous Subpixel
Monitoring (CSM) algorithm is one of the few examples that integrate
CCDC and subpixel mapping for continuous monitoring of urban im-
pervious surface area (Deng and Zhu, 2018).

5.2. Urban heterogeneity

Urban environments vary significantly around the world as well as
within particular cities or urban regions. Although urbanization is often
presented as a uniform process, reflecting the northern hemisphere
experience with industrial development, colonial metropolises, or post
World War II suburbanization, there are many kinds and styles of ur-
banization underway today (Brenner, 2014; McGee, 2014; McHale
et al., 2015; Taubenböck et al., 2018). Contemporary cities emerge or
transform based on many rationales and drivers, including the familiar
driver of industrialization, but also due to consumerism, the flight of
refugees, dispossession in the countryside, shifts in government policy,
and unfettered real estate speculation. Many cities, of course, combine
several of these drivers. All of these drivers are themselves shaped by
cultural, historical, climatic, regional environmental, geomorphic,
economic, and governance contexts, among others. This variety of
drivers creates the condition for a large heterogeneity of urban devel-
opment patterns.

Despite this heterogeneity, the vast majority of urban remote sen-
sing studies focus on a single “urban class”, particularly for studies
based on coarse spatial resolution satellite data. In other words, the
world is categorized as a binary — urban versus non-urban and the
richness of urban form and heterogeneous ways in which it can change
are not usually taken into account. Of course, the rampant patterns of
urbanization in the world today do lend some value to such binary
depictions, in which urban land conversion is illustrated by a garish red
splotch overspreading the calm earth colors representing agricultural,
village, pastoral, or wild lands. Such coarse scale changes have for a
long time been of concern as pressing global changes (Berry, 1990;
Vitousek, 1997).

However, such a coarse scale, aggregated approaches to quantifying
urban change can be problematic. For example, “urban” in Lagos
(Myers, 2011) is not equivalent to “urban” in Los Angeles (Dear and
Dahmann, 2008). Furthermore, neighborhoods within Lagos and Los
Angeles may be strikingly different in structure and form. Details re-
levant to the social, ecological, and economic aspects of urbanization,
that is, the elements of sustainability, are hidden in such aggregated,
generalized approaches to urban assessment. For example, shrinking
cities in post-industrial situations (Haase, 2008), infill or replacement
in older suburban zones (Wilson et al., 2013), and the dynamic creation
and occupancy of vacant lands in even established city cores (Johnson
et al., 2014; Li et al., 2018), are all invisible to the single class approach
to urban mapping. There is a great opportunity to focus urban remote
sensing on the within city scales that would better document and follow
such patchiness and change. A further shortcoming of the coarse scale,
binary approach to urban delineation, is that ecological structures,
composition, and processes are essentially omitted by definition. If
urban is defined as only built elements, then very likely only the largest
green and blue spaces will be recognized, if any are recognized at all.
Such conceptually coarse (as opposed to merely coarse in terms of pixel
size) examinations will miss the small, interstitial green spaces, or the
fact that many urban patches are to some extent hybrids of natural,
engineered, and constructed components.

In contrast to the mixed pixel issue originated from per-pixel clas-
sification with coarse resolution remote sensing imagery, a variety of
attempts have been made to alleviate the concerns of urban hetero-
geneity by characterizing inter-urban variation. These methods can be
grouped into two categories. The first category is to develop new
spectral indices specifically designed for depicting urban environments.
Comparing to the binary urban/non-urban classification, these urban
indices are usually easy to implement and convenient in practical ap-
plications (Deng and Wu, 2012; He et al., 2010; Zha et al., 2003; Zhang
et al., 2013a; Zhang et al., 2013b). The second category is to improve
information from the spatial domain. This can be achieved by mapping
urban compositions at the subpixel level as a continuous field (Deng
and Wu, 2013b; Powell et al., 2007; Roberts et al., 2012; Wetherley
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et al., 2017; Xian and Homer, 2010; Yang et al., 2003). Both approaches
are designed to provide more heterogeneous information within each
urban pixel by using continuous variables in the spectral or spatial
domains, which is more beneficial and realistic for mapping the het-
erogeneous urban landscapes. In particular, by following Ridd's urban
morphology model (Ridd, 1995) — the Vegetation-Impervious surface-
Soil (VIS) model — multiple subpixel urban attributes can be simulta-
neously considered to characterize urban heterogeneity, which is al-
ready an improvement when compared with traditional binary classes
from the per-pixel classification approach. Nevertheless, simply using
three elements may be still far from enough to characterize the mixed
nature of urban environment for applied practices.

Two recent classification frameworks have characterized inter-
urban variation using more than three remotely-sensed based, or re-
motely-sensed derived elements. The first from urban climate/meteor-
ology, the World Urban Databased and Portal Tool (WUDAPT) frame-
work, uses multiple remotely-sensed variables to classify areas of the
urban fabric according to how these areas shape Local Climate Zones
(LCZs). Landscapes in this framework can be divided into 17 LCZs, in
which 15 of them are defined by land cover and surface structure
combinations, and 2 of them are defined by construction materials and
anthropogenic heat emissions (Stewart et al., 2014; Stewart and Oke,
2012). A second example, the urban stands classification system,
characterizes neighborhoods within urban areas based on their building
layouts, street-network configuration, and job-housing balance. The
stand classification concept has been used to characterize urban het-
erogeneity as it relates to the human and biophysical processes that
occur (e.g. travel behavior) (Stokes and Seto, 2019). These novel re-
presentations of urban heterogeneity help to better describe the com-
plexity of urban areas.

The points reviewed in this section suggest a rich array of urban
features and dynamics that might be better assessed by remote sensing.
Given the current and increasing sophistication of remote sensing, the
field is poised to contribute to the understanding of urban systems at a
wider range of scales, with sensitivity to a more inclusive range of
urban drivers and resultant forms. If remote sensing can be more closely
linked with other disciplines involved in understanding and predicting
urban form and dynamics, it is easy to envision significant advances.
Perhaps most obvious would be a processing system that takes into
account the multiple scales of urban processes, the fact that cities are
lived places as well as physical forms (Marcotullio and Solecki, 2013),
and the fact that urban systems are — often cryptically — ecological as
well as social and technological systems (Grimm et al., 2016).

5.3. Urban form and structure in two- and three-dimensions, emphasizing
spatial patterns and connectivity

Many biophysical and socioeconomic processes are shaped by the
vertical structure and form of urban areas (Grafius et al., 2018). Thus,
in addition to heterogeneity, mapping urban form (e.g., built-up
structures) is an essential dimension of future urban remote sensing
research.

Urban form (or structure) plays a crucial role in how the urban
biophysical environment functions and interacts with human activities.
Urban form — the pattern and spatial configuration of land use,
transportation, and urban designed elements (Hamin and Gurran, 2009;
Seto and Dhakal, 2014) — is crucial for sustainable and smart urban
development (Ramaswami et al., 2016). Urban form can be character-
ized by the physical urban extents, the layout of streets and buildings,
as well as the internal configuration of settlements and greenspace
(Seto and Dhakal, 2014). Moreover, the dynamics of urban form in the
horizontal and vertical dimensions can shape many associated bio-
physical processes in the urban system (Grafius et al., 2018). It is worth
noting that 3D urban models are not yet available for large areas due to
data costs or data scarcity. However, recent efforts using digital surface
models with lower resolutions (such as from stereo sensors like Cartosat

or RADAR sensors such as TanDEM-X) than the commonly used VHR
optical stereo sensors (such as WorldView) or airborne LIDAR data have
proven their capability of significant reduction of data costs and over-
coming data availability (Wurm et al., 2014; Geiß et al., 2017). This
section provides insights on research opportunities for urban form in a
variety of biophysical processes.

Urban form often emphasizes the variety of urban spatial arrange-
ment in the form of two-dimensional maps. Even from this “flat” per-
spective, a rich typology emerges. Simple contrasts like spider webs,
stars, corridors, infill, that describe the layout of urban land cover, are
common, but urban form also includes finer patterns — the config-
uration of streets and blocks, plots or parcels, buildings, and greenspace
(Oliveira, 2016). Urban form has been extensively studied in a variety
of disciplines such as architecture, geography, history, and planning
(Moudon, 1997; Conzen, 2001). When the third dimension is added,
urban form appears as still more complex.

Urbanization does not just increase urban land cover but can also
dramatically alter urban form (Dupras et al., 2016; Park et al., 2014).
There has been a growing interest in capturing form, with an extensive
body of work using landscape metrics regarding the size, density, shape,
and distribution of urban patches to characterize and quantitatively
describe urban form (Larondelle et al., 2014; Seto and Dhakal, 2014;
She et al., 2017; Wang et al., 2017). For example, one study found that
small urban patches will self-grow and/or merge with surrounding
large urban clusters during the urbanization process (Li and Gong,
2016). As a consequence, the overall fragmentation of urban clusters
increases simultaneously with urban expansion. Recent work in this
area has used three simple dimension—human constructed, water, and
soil-plant continuum—to develop a multi-dimensional conceptualiza-
tion and mapping of urban form (Wentz et al., 2018).

The effect of urban form requires further investigation to advance
our understanding of the urbanization impacts on all dimension of
urban sustainability. For example, recent work has characterized the
urban landscape with an explicit aim towards understanding how urban
form relates to transport behavior and contributes to sustainability
(Stokes and Seto, 2019). Another example is how urban form is related
to biodiversity. Urban form influences the biodiversity in the urban
ecosystem through changing its habitat environments and accessibility
to surrounding ecosystems. In general, the influence of urban form on
biodiversity can be depicted as the compositions of relevant elements
such as residential area, pavements, road network, and green spaces
(Nielsen and Jensen, 2015; Zhong et al., 2014). For example, the bird
richness responds negatively to the fraction of impervious surface area
(Silva et al., 2015). Compared to apartment buildings in a housing
neighborhood, detached houses with interspersed trees among them
have more insectivores (Andersson and Colding, 2014). Moreover, the
connectivity of ecological corridors is crucial to maintaining the bio-
diversity and species abundance of urban ecosystem (Park et al., 2014;
Silva et al., 2015).

Urban form assessed at the microscale could also inform future UHI
studies. Urban form can intensify or mitigate UHI effects through
changing relevant biophysical factors. The quantity and distribution of
urban green spaces in the residential or commercial area can alter
urban form through adjusting the spatial configuration of built-up
areas, which will further affect the cooling effect offered by plants to
mitigate UHI effects (Kong et al., 2014; Zhou et al., 2017). Urbanization
encroaches upon natural areas with green spaces, generally leading to a
more compact urban form, in turn, the UHI effect could be intensified.
In addition to the biophysical environment, urban forms (e.g., sparse or
dense residential areas) are also associated with human activities. Thus,
building energy use and resulting anthropogenic heat discharge vary
with different urban forms, resulting in different UHI effects (Güneralp
et al., 2017; Rodríguez-Álvarez, 2016). Moreover, urban form induces
changes in the surface energy balance and further affect the spatial
pattern of UHI in the urban system (She et al., 2017; Tratalos et al.,
2007). Change in urban form, which can foster natural ventilation in
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building, has been proposed to improve the thermal environment with
appropriate distribution of different height buildings (Middel et al.,
2014).

The consideration of urban form, particularly its vertical dimension
(i.e., building height and volume), will bring new insights in projecting
future emissions under urbanization and climate change. Studies that
compare the vertical dimension of urban areas to night lights or hor-
izontal expansion show that cities with similar extent can vary sig-
nificantly in terms of the building stock and vertical urban structure
(Frolking et al., 2013). Greenhouse gases emissions, a primary source
influencing future climate change, are associated with urban form
(Hamin and Gurran, 2009). A compact urban form can reduce anthro-
pogenic CO2 emissions by enabling low-carbon transportation modes
and travel behaviors (Rodríguez-Álvarez, 2016; Wang et al., 2017).
With a spatially aggregated urban form having many high buildings,
e.g., dense distributed residential and commercial areas (Zhong et al.,
2014), per capita CO2 emissions from transportation can be sig-
nificantly reduced (Creutzig et al., 2016, 2015).

Understanding of the role of urban form in shaping the biogeo-
chemical cycles of water, land, and atmosphere is also a significant gap.
Nutrients such as atmospheric depositions, pet waste, and fertilizers,
which have become a crucial threat to water quality in streams or
rivers, are influenced by urban form during their transportation
through the rainfall and surface runoff processes (Yang and Lusk,
2018). Soil sealing, defined as the covering of land by impervious
surface areas, is a common phenomenon in suburban regions, due to
expansive urban development and the prevalence of parking lots
(Tombolini et al., 2016). Moreover, the geometry and distribution of
buildings are closely related to the atmospheric environment (e.g., air
quality), which is a rising concern to public health for people living in
megacities. For example, fragmented cities are associated with higher
pollution concentration (e.g., NOx and PM 2.5) (Fan et al., 2018;
Rodríguez-Álvarez, 2016; She et al., 2017).

5.4. Linking remote sensing with emerging urban data

Remote sensing has long been used to extract urban land cover and
use information and to describe different aspects of urban environ-
ments, such as urban infrastructure, urban impervious surface, urban
vegetation, urban tree canopy cover, and surface urban heat island.
Despite the long history of success, the mere usage of remote sensing
data in the literature may not be appropriate for future urban studies.
The reason is twofold. First, only the physical environment information
of urban can be retrieved from remotely sensed imagery, while other
types of urban information cannot be directly obtained. Examples in-
clude land use (Huang et al., 2018c), sentiment and emotion in a city
(Wang and Stewart, 2015), spatially explicit human activity and mo-
bility (Frias-Martinez et al., 2012; Soliman et al., 2017). Such in-
formation is essential to understanding the interaction between human
beings and their living environment, and analyzing how urban in-
habitants view, sense, and change their living environment. Second,
local knowledge is always required as an important input for per-pixel
or sub-pixel image classification of urban environments. Such

information, however, relies heavily on human inputs and the expertise
of the researchers. In support of urban remote sensing for better un-
derstanding of urban environments, one of the solutions in the future is
to take advantage of emerging urban information from a variety of data
sources, especially those reported by humans as a new type of sensor
which is called human sensors (Goodchild, 2007). More importantly,
most, if not all, of these multi-source datasets are publicly available,
and free of charge.

Two major types of open access urban data can be used to supple-
ment remote sensing imagery – including structured and unstructured
data. Structured data is preprocessed, well-organized, and generally, do
not require substantial data cleaning. Structured data are usually col-
lected and processed by federal agencies (e.g., U.S. Census and U.S. city
open data), and more recently, private companies (e.g., Google street
view, mobile phone data, subway smart card, and taxi GPS data), and
active individuals (e.g., OpenStreet Map). Structured data usually
contain a specific geographic location that can be directly and con-
veniently linked to remote sensing imagery. In contrast, unstructured
datasets are more likely to be generated by numerous internet users and
retrieved by researchers from the Internet. Such information is loosely
distributed online without an appropriate organization. Examples in-
clude social media data (e.g., Twitter, and Flickr photos), and online
text reviews (e.g., check-in data of FourSquare, and Yelp). A compar-
ison of the characteristics of structured and unstructured data as a
complementary dataset to remote sensing are described in Table 2.

Despite the complementary features between urban remote sensing
imagery and open urban data, several data issues exist that make their
integration challenging. First, open data and remote sensing data are
collected at different scales. Social scientists, demographers, sociolo-
gists, urban planners, and policy makers prefer to employ predefined
administrative boundaries, such as Census geographical unit, postal
unit, school district, and congressional district boundaries. In addition,
because open data is not collected evenly across space, using too fine a
scale might lead to the data sparsity issue (i.e., few or no data in some
areas), especially for social media data.

Comparatively, remote sensing scientists are used to employing
uniform grids at a scale either inherently determined by the spatial
resolution of remote sensing images or the image segment level. In most
of the attempts to combine remote sensing and open data (most of
which are point data), researchers still follow the tradition of remote
sensing studies and select grid as the study scale, in which point-based
open urban data are aggregated into each grid. These grids and scales,
however, are not frequently used by domain experts. To make remote
sensing research more useful and actionable, researchers can further
spatially aggregate the per-pixel results in a scale or unit most com-
monly used in the relevant discipline. Another type of scale difference
exists between Google street view and remote sensing imagery. The
former data provide a 360-degree view of the streetscape of a city,
while the latter only offers a vertical aerial view. For these cases, do-
main experts should play a major role on constructing a big picture of
the application question, while remote sensing scientists may need to
spatially aggregate the per-pixel results to a scale or unit most com-
monly used in the relevant discipline.

Table 2
Comparisons between structured and unstructured data as a supplement data for urban remote sensing.

Structured data Unstructured data

Data source Federal agencies, government departments, private sectors,
individuals

Private sectors, individuals

Location/geographic information Specific, and clear Some are specific, while others are only implied in the text (or
hashtag)

Data cleaning necessity A few but limited Considerable, and could be labor intensive
Data quality Well organized Unknown/poor
Data easiness to researchers Easy access/downloadable Usually by web scrapping
Supplement contents Demographic and socioeconomic information, human activity Human activity, human perception
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Second, open access urban data can be biased. For unstructured
data, there is uncertainty around the data's representativeness, since the
population of social media users is not reflective of the whole popula-
tion. Additional sources of uncertainty include missing data from web
crawling, repetitive posts from one single highly active user, under-
representative samples (e.g., younger generations tend to dominate the
contributing group). Prior to the collective usages of remote sensing
imagery and open data for urban applications, considerable automated
data collection, cleaning and matching, and compilation are necessary.
To address this, remote sensing scientists may need to collaborate with
urban data scientists who have expertise in addressing the challenges of
unstructured data.

6. Concluding remarks and perspectives

Our assessment of the research literature and discussions between
the policy and science communities leads us to conclude that urban
remote sensing cannot continue to focus primarily on mapping urban
cover and use. While continued assessments of urban land cover and
land use will be necessary for a number of user communities, other
types of analyses are needed. Strategic directions, including high fre-
quency analysis of urban environments, urban heterogeneity, urban form
and structure in 2- and 3-dimensions, and improving the performance with
other types of data can expand the set of urban research question an-
swerable with EO data.

Though this review focuses only on the major scientific advances in
urban remote sensing, we cannot ignore the new technique and tech-
nology improvements that push urban remote sensing forward aggres-
sively. For example, new machine-learning techniques, such as deep
learning, are changing the game. Deep learning is characterized by
neural networks (NNs), involving more than two layers (this is where
the term “deep” originates). As a “black-box” solution, deep neural
networks learn and explore exclusively from the data, without any
domain-specific knowledge. The Convolutional Neural Networks
(CNNs) approach has proven extremely effective for image analysis, due
to its capability of considering the spatial patterns by interleaving
convolutional and pooling layers. Though there are contrasting opi-
nions in remote sensing community regarding the use of deep learning
techniques, this technique has attracted much attention due to its su-
perior performances (Zhang et al., 2016; Zhu et al., 2017). A recent
study suggests that deep learning is particularly good at capturing the
fine features of complex urban areas, and performs better than other
traditional classification methods (Huang et al., 2018a; Huang et al.,
2018b).

New remotely sensed big data streams are also revolutionizing
urban remote sensing. Historically, the urban remote sensing commu-
nity has relied on data from NASA assets. However, many new oppor-
tunities have emerged. The Sentinel mission from the European Earth
monitoring program has started to launch a constellation of satellites
since 2012 (Aschbacher and Milagro-Pérez, 2012). With a span of 13
spectral bands at a spatial resolution as high as 10m, Sentinel-2 has
great potential for urban remote sensing (Drusch et al., 2012). Studies
have suggested that Sentinel-2 adds value to the mapping of built-up
areas, over predecessor Landsat-based products (Lefebvre et al., 2016;
Pesaresi et al., 2016a). China has also launched a few satellites that are
unique for urban remote sensing. For example, high spatial resolution
nigh-time light imagery (130-meter) are now available from Luojia-1
(Li et al., 2019b), and the multi-view imagery provided by ZiYuan-3
satellite can map urban in 3D at the global scale (Liu et al., 2019). At
the same time, an almost unmanageable number of new commercial
satellites, particularly smaller satellites, provide data with both high
spatial resolution and high temporal frequencies. For example, a total of
more than one hundred small satellites from Planetscope can monitor
our planet at approximately 4m every single day. These new datasets
stimulate a variety of new urban remote sensing algorithms and ap-
plications. Over the past five years, the number of operational satellites

has increased 40%, and nearly 1400 now orbit the Earth. The data
collection capability of each new satellite iteration is also increasing at
an astonishing rate. For example, Landsat 5 collects 40 GB of remotely
sensed data per day, and Landsat 7, Landsat 8, and Sentinel-2 collect
260 GB, 750 GB, and 1.6 TB data per day respectively (Wulder et al.,
2016). Those exponentially growing open and free satellite data create
a new era for urban remote sensing, but also challenge the established
urban remote sensing science and applications, as researchers are easily
buried in this enormous volume of data. As this “data tsunami” arrives,
the question becomes whether we are ready to derive meaningful new
knowledge about cities and sustainable urbanization from it.

The rapid development of modern information technology, hosted
computing platforms, such as cloud computing and grid computing,
offer a promising solution (Esch et al., 2018). Google Earth Engine is
one example of how big data and cloud computing can be seamlessly
integrated, facilitating tens of thousands of researchers who may have
limited remote sensing knowledge but need to process huge amount of
remotely sensed data, requiring extensive computing resources
(Gorelick et al., 2017).

Last but not least, remote sensing scientists need to collaborate more
with other scholars and practitioners from other urban and allied fields.
Urban scholars from other disciplines ask different types of questions
from urban remote sensing. As a community, we need to think about
not only how to derive the information (e.g., algorithms development),
but what to do with it and who will use it. It is not sufficient to have one
sentence at the end of a paper indicating “this will be useful” without a
clear understanding of who will use it and how to use it. Urban remote
sensing community should always keep science and policy in perspec-
tive to facilitate the transition towards a smart, sustainable, and healthy
urban environment.
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