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Due to the heterogeneity of urban environments, subpixel urban impervious surface mapping is a chal-
lenging task in urban environmental studies. Factors, such as atmospheric correction, climate conditions,
seasonal effect, urban settings, substantially affect fractional impervious surface estimation. Their
impacts, however, have not been well studied and documented. In this research, we performed direct
and comprehensive examinations to explore the impacts of these factors on subpixel estimation when
using an effective machine learning technique (Random Forest) and provided solutions to alleviate these
influences. Four conclusions can be drawn based on the repeatable experiments in three study areas
under different climate conditions (humid continental, tropical monsoon, and Mediterranean climates).
First, the performance of subpixel urban impervious surface mapping using top-of-atmosphere (TOA)
reflectance imagery is comparable to, and even slightly better than, the surface reflectance imagery pro-
vided by U.S. Geological Services in all seasons and in all testing regions. Second, the effect of images with
leaf-on/off season varies, and is contingent upon different climate regions. Specifically, humid continental
areas may prefer the leaf-on imagery (e.g., summer), while the tropical monsoon and Mediterranean
regions seem to favor the fall and winter imagery. Third, the overall estimation performance in the humid
continental area is somewhat better than the other regions. Finally, improvements can be achieved by
using multi-season imagery, but the increments become less obvious when including more than two sea-
sons. The strategy and results of this research could improve and accommodate regional/national sub-
pixel land cover mapping using Landsat images for large-scale environmental studies.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Land cover abundance is defined as the proportion of an area
covered by one type of certain terrestrial cover within an image
pixel (Shao and Lunetta, 2011; Weng, 2012). A variety of scientific
research and practical applications require the information of frac-
tional covers of different types. For example, subpixel impervious
surface is an important input in hydrological modeling (Mejía
and Moglen, 2010; Zhou et al., 2010), stream hydrology (White
and Greer, 2006), water quality analysis (Brabec et al., 2002), urban
development monitoring (Jantz et al., 2005; Tsutsumida et al.,
2016), urban heat island analysis (Yuan and Bauer, 2007; Deng
and Wu, 2013a, 2013b), and socioeconomic analysis (Yu and Wu,
2004; Deng and Wu, 2013c). Percent tree canopy information is
directly associated with biomass, carbon sequestration, stream
water temperature, air pollution, fire behaviors, and various forest
management practices (Suganuma et al., 2006; Walton, 2008;
Coulston et al., 2012, 2013). Shrubland abundance plays an essen-
tial role in energy and gas fluxes, regional biodiversity, and global
biogeochemical cycles (Thorp et al., 2013; Xian et al., 2013, 2015).
Similarly, due to the nature of high fragmentation and spatial
heterogeneity, fractional wetland cover is necessary for accurately
mapping important habitats which provides abundant ecosystem
services, such as sediment accumulation, water filtering, ground-
water recharge, and flood control (United Nations Environment
Program, 2010; Reschke and Hüttich, 2014; Huang et al., 2014).
Because of the importance and usefulness of subpixel land cover
information, several fractional cover products at the global and
national scale have been invented and released to the public for
applied practices. These well-known products include the 1-km
global impervious surface product provided by National Oceanic
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and Atmospheric Administration (NOAA; Elvidge et al., 2007), the
1-km fraction of green vegetation provided by Copernicus Global
Land Service (Baret et al., 2013), the 30-m rescaled, 250-m and
500-m global MODIS vegetation continuous fields product
(DiMiceli et al., 2011; Sexton et al., 2013), and the 30-m percent
imperviousness and tree canopy products of National Land Cover
Dataset (NLCD) with a coverage of the contiguous United States
(U.S. Geological Service, USGS; Homer et al., 2004, 2007).

In addition to these publicly available products, many methods
have been proposed and adapted to derive the fractional cover
information of different land cover types in distinct places of the
world. These approaches can be grouped into twomajor categories.
The first one is spectral mixture analysis (SMA). Having been
developed since 1970s, these SMA methods include classic SMA
(Nash and Conel, 1974; Adams et al., 1986; Mustard and Pieters,
1987, 1989), endmember bundling (Bateson et al., 2000), multiple
endmember SMA (MESMA; Roberts et al., 1998a; Powell et al.,
2007; Franke et al., 2009; Thorp et al., 2013; Deng, 2015; Dengm
2016), spectral weighing (Chang and Ji, 2006; Somers et al.,
2009), spectral transformation (Wu, 2004; Zhang et al., 2005,
2006), and spatially adaptive SMA (Deng and Wu, 2013d; Zhang
et al., 2015; Shi and Wang, 2014; Wang et al., 2016). The second
category is machine learning approaches. These empirical and
non-parametric methods include Cubist regression tree (Yang
et al., 2003; Deng and Wu, 2013e; Xian et al., 2013, 2015), artificial
neural network (Flanagan and Civco, 2001; Weng and Hu, 2008;
Hu and Weng, 2009; Shao and Lunetta, 2011), support vector
machine (Walton, 2008; Esch et al., 2009; Okujeni et al., 2013),
and random forest (Deng and Wu, 2013e; Coulston et al., 2012,
2013; Reschke and Hüttich, 2014; Tsutsumida et al., 2016). These
two groups of methods have completely different mechanisms,
and therefore, it is difficult to compare the performance of these
two methods. A recent study with objective comparisons suggests
that these two categories have their own strengths and limitations
depending on the availability of training samples: ‘‘SMA might be a
favorable option with a small number of samples, while Random For-
ests might be preferred if numerous samples are available” (Deng and
Wu, 2013e).

Despite the effectiveness of these methods, many challenges
still exist, including the impacts of atmospheric correction, sea-
sonal effect, locational variations (e.g., climate conditions), as well
as the usage of multi-temporal images. For example, although the
impact of seasonality on mapping urban impervious surface has
been examined in the literature, most of the previous studies have
an emphasis on two regions. The first region is temperate regions
with a humid continental or oceanic climate. Examples include
New York (Luo and Mountrakis, 2010; Mountrakis and Luo,
2011), Ohio (Wu and Yuan, 2007; Deng, 2016), Minnesota (Yuan
and Bauer, 2007; Deng, 2015), Wisconsin (Yu and Wu, 2004;
Deng and Wu, 2013b), Washington (Powell et al., 2008), Connecti-
cut (Flanagan and Civco, 2001), Indiana (Hu and Weng, 2009;
Weng et al., 2009), Missouri (Zhou et al., 2012), the Great Lake
region (Shao and Lunetta, 2011), Beijing, China (Xiao et al., 2007;
Guo et al., 2014), Japan (Yang et al., 2012), Chesapeake Bay water-
shed (humid subtropical climate; Jantz et al., 2005; Powell et al.,
2008; Deng and Wu, 2013e), Wales (oceanic climate; Scott et al.,
2014), and Bonn, Germany (oceanic climate; Franke et al., 2009).
The second region is the tropical and subtropical areas. Exemplar
study areas and climates in the literature include California
(Mediterranean climate; Rashed et al., 2003; Roberts et al., 2012;
Wetherley et al., 2017), Austin (Sung and Li, 2012), Tampa Bay
(humid subtropical climate; Xian et al., 2007), Phoenix (hot desert
climate; Myint and Okin, 2009), Brazilian Amazon (tropical mon-
soon climate; Li et al., 2013), Manaus, Brazil (tropical monsoon cli-
mate; Powell et al., 2007), Pearl River Delta, China (subtropical
monsoon climate; Zhang et al., 2012, 2016; Fan et al., 2015), and
Jarkata, Indonesia (tropical rainforest climate; Tsutsumida et al.,
2016). However, it is still not very clear about the performance
of fractional cover estimation in other regions (e.g., Caribbean)
with different climate types (e.g., Mediterranean, tropical monsoon
and rainforest climate). Also, there is a lack of direct and objective
comparison between the estimation performance in different
regions, as well as a lack of considering the influence of atmo-
spheric correction. Currently, direct and comprehensive compar-
isons over various study areas are not feasible to answer these
questions. Therefore, taking urban impervious surface abundance
as our study target, we have four major objectives in this paper
in an attempt to address the aforementioned existing difficulties:
(1) exploring how atmospheric correction on Landsat imagery will
affect the estimation accuracy of urban impervious surface abun-
dance; (2) examining the impact of seasonality on subpixel urban
impervious surface mapping; (3) comparing model performance in
study areas with distinct environmental settings in three climates
regions; and (4) investigating the estimation performance using a
single-date image and multi-season Landsat combinations.
2. Study area and data

Three cities with different urban settings located in different cli-
mate regions are used as our study area: Binghamton metropolitan
area, San Juan metropolitan area, and Los Angeles metropolitan
area. Their locations and extents are displayed in Fig. 1. Bingham-
ton metropolitan area is located in Broome County in upstate New
York, which represents a humid continental climate with hot sum-
mers and cold winters. With a consistently decreasing population
since 1970s (dropping from 221 thousand in 1970 to 195 thousand
as of 2016 Census ACS), Binghamton is a typical post-industrial
shrinking city in the Northeastern United States. Impervious sur-
face areas are mainly found in the downtown area of Binghamton
(where the central business district is located), and a number of
factories and shopping malls are located separately in the adjacent
villages of Endicott and Johnson city, and the main campus of Bing-
hamton University, State University of New York is located in Ves-
tal. To examine the impacts of more spectrally similar land cover
categories (e.g., bare soil in croplands and urban impervious sur-
face), the study area includes the entire Broome County. For the
second study area, San Juan metropolitan area is in the northeast-
ern coastal areas of the main island of Puerto Rico, which has a
tropical monsoon climate. This area is composed of the city of
San Juan and its six surrounding municipalities (i.e., cities), includ-
ing Bayamón, Carolina, Cataño, Guaynabo, Trujillo Alto and Loíza.
While they are not constituted as a formal administrative unit,
all seven municipalities in this area are economically tied together.
This metropolitan area possesses the most populous urban
agglomeration in Puerto Rico with approximately 1.25 million res-
idents, which corresponds to a 27% of the total population in this
main island. Finally, the third study area is Los Angeles and its
adjacent suburban area, which is in Southern California on the
West coast of the country. It is the second largest city of the U.S.
with a total population over 12 million. This subtropical metropoli-
tan area widely spread out the coastal area, which features a
Mediterranean climate with dry summers and moist winters. It is
worth noting that, due to the dry and high temperature condition
in summers, wildfires always occur in the natural areas close to
this study area (such as Santa Monica Mountains and Santa Susana
Mountains) in the past few decades (Roberts et al., 1998b, 2003;
Riaño et al., 2002; Dennison et al., 2006).

All Landsat images for these three study sites were subset using
the boundary shapefiles from U.S. Census Bureau, and re-projected
to their respective UTM zone. A total of twelve original Landsat
images were used in our experiment. That said, for each study area,



Fig. 1. Study areas of the three metropolitan areas (from left to right): Los Angeles (California), Binghamton (New York), and San Juan (Puerto Rico).
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four scenes of original images were directly downloaded from the
USGS website. These images correspond to the four different sea-
sons of a year, which represent leaf-on, leaf-off seasons and their
transition periods. Among numerous candidate images in the past
five years, the image with minimum cloud and snow coverage of
each season was selected as a representative image of that season.
The information of these images, e.g., the acquisition dates and the
percentage of cloud coverage, is shown in Table 1. It is worth not-
ing that Landsat 8 images were employed for all seasons and all
study areas except the winter image in Binghamton. Because of
the impacts of the lake-effect climate and mountain topography
(e.g., valley fog and up-slope fog), it is extremely difficult to find
a cloud-free image without snow coverage in winter in the
metropolitan Binghamton area. Alternatively, we adopted a Land-
sat ETM+ image taken in winter 2012 that meets our requirement.
Although numerous gaps exist in this Scan Line Corrector (SLC) off
image, Binghamton is in the central portion of the Landsat scene
and dominated by valid pixels. Therefore, the influence caused by
the SLC failure is limited in this study site. These images were then
exploited to examine the impacts of seasonal variations on land
cover abundance estimation using Random Forest. One image of
1-m orthorectified color aerial photograph was also obtained for
each study area to provide ground truth information for training
Table 1
Landsat images information of the three study areas. All images are Landsat OLI 8 scenes

Season Binghamton San Juan

Date Cloud% Date

Spring 4/24/2014 0.04 5/7/2015
Summer 7/16/2015 0.05 6/10/201
Fall 11/7/2016 0.11 9/22/201
Winter 2/6/2012a 0.27 12/30/20

a Landsat ETM+ image.
and testing samples. Note that we selected aerial photographs with
an acquisition time that is as close as possible to those of Landsat
images. Specifically, the aerial photograph for Binghamton was
taken in 2015, Los Angeles in 2016, and San Juan in 2007 (further
compared with satellite images from Google Earth), respectively.
The process of pixels that experience land cover and land use
change during the gap between the acquisition time of the Landsat
image and the aerial photograph was detailed in the following sec-
tion. To consider the topography influence (Homer et al., 2004;
Coulston et al., 2013), 30-m ASTER global digital elevation model
(DEM) data of each study area was downloaded from the USGS
website.

3. Methodology

3.1. Image preprocessing

Raw digital numbers (DN) of all Landsat images were first con-
verted to top of atmosphere (TOA) reflectance. These images are
called TOA image hereafter. This was done by following the Land-
sat 7 (Irish, 2000) and Landsat 8 science data user’s handbook
(USGS, 2016a) by retrieving the image information from the header
file of each image (e.g., gain, offset, sun zenith angle, and
unless specified.

Los Angeles

Cloud% Date Cloud%

7.37 3/7/2015 0.17
6 4.32 8/27/2014 0.16
3 1.83 10/19/2016 0.18
14 4.08 2/6/2016 0.38



Table 2
Accuracy metrics of three different climate regions using a single-date Landsat image (the best indicator of each assessment category is shaded).
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acquisition date). To further test the influence of atmospheric cor-
rection, we further derived the USGS Landsat 7 and 8 surface
reflectance (SR) data of the same location (hereafter SR images).
The Landsat 7 SR images were processed by the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) (Schmidt et al.,
2013) and the Landsat 8 SR images were processed by the Landsat
8 Surface Reflectance (L8SR) system (USGS, 2016b). These pro-
cesses resulted in eight images in each study site for comparison
purpose (i.e., two groups of different reflectance types in four sea-
sons). Cloud and cloud shadow were detected by the Fmask algo-
rithm (Zhu and Woodcock, 2012; Zhu et al., 2015). Pixels
contaminated by cloud or cloud shadow were then masked out
and were not considered in the next steps of model training and
validation of the experiments.
Fig. 2. Comparison of a single-date Landsat image with different seasons in
Binghamton, New York. The red arrow highlights the scatterplot with the best
regression model parameters. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
3.2. Training sample collection

Following a stratified sampling strategy (Deng and Wu, 2013e),
we initially generated 400 random samples on the orthorectified
aerial photograph in each study site as the training samples of
the machine learning model. Half of the random samples were
selected from urbanized areas, and the other half were from rural
areas. It is worth noting that since not all random samples are valid
and used directly, two criteria were set to refine these stratified
random samples. First, samples that fall in certain types of land
covers or invalid pixels (i.e., water, cloud, and cloud shadow) were
automatically removed from both the sample pools. Second, sam-
ples that experienced land cover change between 2012 and 2016
(corresponding to the acquisition time of different images of the
same study site) were automatically removed as well. This is done
by the visual comparison of these samples on the images taken
within these years, and the high spatial resolution satellite images
from Google Earth, as well as by the local knowledge from the
well-trained researchers in our team. In all cases, more than 300
samples remained after the automated removal of those invalid
pixels. For comparison purpose, we limited the total sample size
to 300 for all study sites. Training samples of percent urban imper-
vious surface was derived by manually digitizing in these 300 orig-
inal pixels to build the random forest models.
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3.3. Estimating land cover abundance using random forest

Originally developed for classification and prediction by
Breiman (2001), Random Forest is now regarded as one of the most
effective machine learning approaches for classifying remote sens-
ing images and deriving fractional land cover information (Deng
and Wu, 2013e). The principle of Random Forests is to generate a
large number of different regression models for continuous predic-
tion. If a regression tree model is regarded as an individual ‘‘tree”,
then all the generated models are also compared to a ‘‘forest”. A
significant feature is that a layer of randomness is implemented
to bagging. By using such a mechanism, the approach turns into
robust against overfitting (Liaw and Wiener, 2002). Four basic
steps are implemented in this non-parametric ensemble algorithm
for the prediction of continuous responses (Breiman, 2001):

(A) Random selection of bootstrap samples from the training
pool.

(B) Random generation of an independent variable subset from
all predictor variables.

(C) Construction of a series of regression tree models by repeat-
ing the first two steps.

(D) Calculation of the mean of the estimates from all built
regression tree models as the prediction output.
Fig. 3. Comparison of a single-date Landsat image with different seasons in San
Juan, Puerto Rico.
By following the literature (Yang et al., 2003; Homer et al.,
2004; Walton, 2008; Coulston et al., 2013; Xian et al., 2013), the
SR and TOA reflectance of all optical Landsat bands of a single-
date image (or a combination of seasonal images) and the ASTER
DEM were used as the independent variables to construct the
empirical random forest model in each study area.

3.4. Accuracy assessment

A total of 300 testing sample polygons were used in each study
site for accuracy assessment. They were also randomly selected
based on a stratified sampling strategy (Deng and Wu, 2013e). This
strategy is the exact same as that of training data sampling as men-
tioned earlier, but with completely different sample pixels. No
cloud-contaminated or cloud shadow-contaminated pixel is
included in any testing sample polygon. Based on the previous
studies (Powell et al., 2007; Deng and Wu, 2013d; Deng, 2016),
each sample covers a geographical area of 90 by 90 m (i.e., a 3 by
3 Landsat pixel neighborhood). In each testing polygon, reference
information was derived by manually digitizing all urban impervi-
ous surfaces on the orthorectified photograph. The percent imper-
vious surface as ground truth was then calculated as the overall
geographical area of digitized impervious surface divided by the
area of a testing polygon (i.e., 8100 m2). Three widely used assess-
ment indicators, including root mean square error (RMSE), mean
Fig. 4. Comparison of a single-date Landsat image with different seasons in Los
Angeles, California.
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absolute error (MAE), and systematic error (SE), were calculated to
evaluate the model performance of all seasonal images in each
study area (Powell et al., 2007; Deng, 2015, 2016). The first two
indicators are calculated to quantify the estimation accuracy, while
the last indicator is adopted to measure the overall estimation
trend or bias in the entire study area. If there are smaller values
for RMSE and MAE, it indicates that the fractional cover estimation
is more accurate. If a smaller number is found with SE, it suggests a
small bias in the estimation. The formulae of these three metrics
can be expressed as follows.

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðf̂ i � f iÞ

2
r

ð1Þ
l ¼ 1
n

Xn
i¼1

jf̂ i � f ij ð2Þ
d ¼ 1
n

Xn
i¼1

ðf̂ i � f iÞ ð3Þ

where c is RMSE; l is MAE; d is SE; f̂ i is the estimated abundance of
urban impervious surface of sample i using random forest; f i is the
digitized impervious surface abundance of sample i from the aerial
photographs; and n is the total of all sample polygons. Moreover,
scatterplots of the predicted urban impervious surface using ran-
dom forest were also plotted against the digitized ground-truth
samples from the orthorectified aerial photographs.
Table 3
Accuracy metrics of three different climate regions with different seasonal combinations u
4. Results

4.1. Results using a single-date image

The three accuracy metrics were calculated and reported in
Table 2. Scatterplots are drawn and shown in Figs. 2–4. In these fig-
ures, regression model between the modeled and actual urban
impervious surface fractions of each scatterplot is built. The regres-
sion line is shown in red, while the 1:1 reference line is shown in
blue. The slope, intercept and coefficient of determination (i.e., R-
squared) of the regression model were calculated and displayed
in each figure. For better visual comparisons of the performance
of different seasons, the scatterplots using SR images are displayed
in the first column of each figure, while those using TOA reflec-
tance images are illustrated in the second column. In each figure,
row one to four correspond to spring, summer, fall and winter
images, respectively.

For Binghamton area, two observations are noticed in the upper
panel in Table 2. First, quantitative indicators in the last three col-
umns on the right are better than their counterparts in the first
three columns on the left. This indicates that the performance of
the TOA reflectance images is as good as, and even slightly better
than, the SR images in all seasons. Second, the best accuracy indi-
cators with minimum values are found in the summer image (with
an RMSE of 8.16%, and an MAE of 4.64%), followed by spring and
fall images, and the least accurate estimation is associated with
the winter image. This trend is the same for both SR and TOA
images. Similarly, as shown in Fig. 2, scatterplots of all the four sea-
sons looks acceptable: other than a small number of outliners,
most of the scatterplots cluster around the red 1:1 reference line.
sing two Landsat images (the best indicator of each assessment category is shaded).
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Moreover, all the slopes of the regression lines are greater than 0.8,
their intercepts are less than 8%, and the coefficients of determina-
tion are better than 0.86. With the smallest intercept (3.21), and
the greatest values of slope (0.93) and R-squared (0.94), the perfor-
mance of the summer image outperform image of any other sea-
son. This further confirms the observation from the findings in
this humid continental climate zone.

For San Juan area, it is observed that the performances of TOA
reflectance images on the right portion are consistently better than
those of SR images on the left portion. Almost all metrics of TOA
images is approximately 1% better than those of SR images. Com-
paratively, the central panel of Table 2 reveals that the seasonal
trend in San Juan is opposite to that in Binghamton. In this tropical
monsoon region, the best accuracy indicators are found in the win-
ter image with an RMSE of 9.37%, an MAE of 5.7%, and an SE of �1%,
followed by fall and spring. The least satisfactory metrics are found
with the summer image. In the regression model in Fig. 3, the per-
formances of all images seem adequate: all R-squared values
greater than 0.82, slopes higher than 0.75, and intercepts less than
5%. Highest correlations in the TOA winter image can be clearly
discerned, generating the greatest values of R-squared (0.91), the
highest slope (0.86) and the smallest intercept (3.0). This suggests
that winter image has the optimal performance among images of
all four seasons in this tropical monsoon area.

For Los Angeles area, the overall result is similar to that in San
Juan. First, by examining the lower panel of Table 2, the accuracy
metrics of the TOA images remain superior to those of the SR
images. Second, the best RMSE (10.49%) is with the TOA fall image;
the best MAE (6.3%) is from the TOA winter image; and the best SE
Fig. 5. Comparison of different seasonal combinations u
(2.25%) is from the SR winter image. The poorest performance is
from the summer image. Scatterplots in Fig. 4 also confirm such
observations. The fall image has the highest R-squared value
(0.86), while the winter image possesses the most close-to-one
slope (0.92) and the least intercept (4.73%) among the four seasons.
Overall, the performances of the TOA fall and winter images are
comparable with each other, and the difference between them is
very small.

4.2. Results of seasonal combinations with two images

For the experiments with seasonal combinations using two
images, a total of six combinations of different seasons were tested
for each study site. Their accuracy indicators are reported in
Table 3, and their scatterplots are displayed in Figs. 5–7 for three
study areas. In these figures, the first column is scatterplots using
SR images, while the second column is corresponding to the same
seasonal combination but using TOA reflectance images. This rela-
tionship also applies to the third and fourth columns, respectively.
Similar to the experiments using single-date images, it is not sur-
prising to find that all TOA images are as good as, and even outper-
form, their counterparts of SR images in three study areas. For
Binghamton area, the best accuracy metrics in Table 3 are associ-
ated with the TOA summer and spring combination, and the TOA
fall and spring combination. In Fig. 5, almost all regression models
have very decent model parameters, as supported by a near 1:1
relationship, with a close-to-one slope (all greater than 0.88) and
a near-to-zero intercept (all less than 7%). Among them, the least
intercept is found with the combination of TOA summer and spring
sing two Landsat images in Binghamton, New York.



Fig. 6. Comparison of different seasonal combinations using two Landsat images in San Juan, Puerto Rico.
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images (3.07%), and the greatest slope is found with the TOA fall
and spring combination (0.95). For San Juan area, similar to the
analysis in the usage of single-date image, the performance of
TOA fall and winter combination does not vary much with, and
slightly outperforms, that of any other combination with an RMSE
of 7.83%, an MAE of 4.98%, and an SE of 0.42. The scatterplots in
Fig. 6 also confirm this observation. The best parameters among
the regression models are from the scatterplot of the TOA fall
and winter combination, producing greatest R-squared (0.92),
and the highest slope (0.87). For Los Angeles area, there is no obvi-
ous variation among the performance of all seasonal combinations
(see the lower panel in Table 3). This is also similar in the single-
date image comparison. The best accuracy metrics can be found
in the TOA fall and winter combination and the TOA fall and sum-
mer combination. In Fig. 7, the metrics and scatterplots of these
two combinations also have the similarly favorable parameters
among others: an RMSE of 0.86, the highest slope of 0.9, and the
smallest intercept of 5.1%.

4.3. Results of seasonal combinations with three scenes and more

The performances of the combinations of multiple seasons
(three or more) were quantified in Table 4, and their scatterplots
were drawn in Figs. 8–10. A total of five combinations were tested
for each study area, i.e., four combinations of any three seasons and
one that includes all four seasons. For Binghamton area, while
visual examination in Fig. 8 finds that all scatters are lying close
to the 1:1 reference line, the combination of TOA spring, summer,
and fall generates the most accurate result among all combinations
with an RMSE of 6.76%, an MAE of 4.26% in the upper panel of
Table 4. This is further confirmed by the regression model param-
eters: an R-squared of 0.95, a slope of 0.95, and an intercept of
3.02%. It is followed by the combination of TOA spring, summer,
and winter. This may reveal that the inclusion of spring and sum-
mer, the two most accurate images in the single-date image group,
will produce the best performance. On the contrary, the inclusion
of the winter image always leads to an unsatisfactory result (e.g.,
the poorest combination is found with the one collectively using
winter, summer and fall images).

For San Juan area, the optimal accuracy metrics in the central
panel of Table 4 is produced by the combination of TOA winter, fall,
and summer images. However, the combination of TOA winter, fall,
and spring images and the combination of all seasons do not vary
much with it. Similar observations can be found in Fig. 9. The
smallest intercept (1%) is related to the combination of all four sea-
sons, the highest slope (0.88) and the greatest R-squared (0.93) is
from the combination of spring, fall, and winter images. This may
suggest that the inclusion of winter images can effectively improve
the estimation accuracy, which is opposite to the experiments of
Binghamton area.

For Los Angeles area, the shaded metrics (with an RMSE of
10.59% and an MAE of 6.5%) in the lower panel in Table 4 is the
minimum errors among all combinations, which corresponds to
the combination of TOA winter, fall, and summer images. This
observation is consistent with the scatterplots in Fig. 10, where this
combination possesses a slope of 0.86, a slop of 0.91, and an inter-
cept of 5.29%. In terms of using all four season images in the three
study areas, although their performances are acceptable, they



Fig. 7. Comparison of different seasonal combinations using two Landsat images in Los Angeles, California.

Table 4
Accuracy metrics of three different climate regions with different seasonal combinations using three or more Landsat images (the best indicator of each assessment category is
shaded).

C. Deng et al. / ISPRS Journal of Photogrammetry and Remote Sensing 133 (2017) 89–103 97



Fig. 8. Comparison of different seasonal combinations using three or more Landsat images in Binghamton, New York.
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might not be the optimal combination in the multiple seasonal
tests, and is as not as good as one of the three-image combination.
5. Discussions

5.1. Comparison between the performance using surface reflectance
and TOA reflectance images

One of the interesting findings from our experiments is that the
performances of the TOA reflectance images are consistently com-
parable to, and even slightly better than, those of the SR images in
all experiments. Such finding is observed not only in the temperate
area with humid continental climate, but also in the subtropical
and tropical areas with monsoon and Mediterranean climates. This
is mainly because the training data for our experiments are directly
collected from and applied to the same Landsat image for subpixel
urban impervious surface mapping. That said, the classifier has
already been well-trained by the current atmospheric condition
of the same images provided by the training data. As long as the
atmospheric condition is homogenous within the image (for exam-
ple, aerosol optical thickness is similar), atmospheric correction
may not be necessary. Especially in this study, the requirement
of homogeneous atmospheric condition was met in all study areas,
since images with minimum cloud coverage (close to zero) were
employed. Note that this is different from the use of transferable
samples from images of the same area but taken on other dates
or from images acquired at other locations. In these two cases
when atmospheric condition is not the same, atmospheric correc-
tion is recommended. This explanation is also supported by the
work of Song et al. (2001). Moreover, both the LEDAPS and L8SR
algorithms may not be perfect, and the Landsat 8 surface reflec-
tance products are only provisional at the moment. Recent studies
have reported inconsistency in surface reflectance between Land-
sat 8 and the previous Landsat sensors (Zhu et al., 2016; Holden
and Woodcock, 2016; Roy et al., 2016). Therefore, the artifacts of
the atmospheric correction algorithm are likely to be introduced
into the corresponding surface reflectance products, and may fur-
ther reduce the classification accuracies. Further studies are
needed in the future to examine the effects of different atmo-
spheric correction methods on fractional land cover estimation,
as well as to improve atmospheric correction for Landsat 8 images.
5.2. Seasonal effects

Summer images have been widely used in most existing stud-
ies. This might be because that the leaf-on images are easier to
obtain due to the greater chance of cloud-free days in summer
(such as in Midwest in the U.S. in the works of Weng et al.,
2009; Deng, 2015, 2016), while both cloud and snow are often cap-
tured in the winter images. How imagery of other seasons affect
the estimation accuracy in different climate regions is still not well
studied in the literature. According to the comprehensive compar-
isons and analyses in our research, seasons that can reach the best
estimation accuracy of urban impervious surface are identified in
the three study areas. First, for temperate regions with a humid
continental climate, the experiment results of Binghamton indicate
that the performance of the summer image is better than the win-
ter image. This is primarily because most vegetation in this climate



Fig. 9. Comparison of different seasonal combinations using three or more Landsat images in San Juan, Puerto Rico.
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region is senescent in winter, and accordingly bare soil and tree
trunks are exposed. These land covers are spectrally similar with
dark urban impervious surface, such as asphalt and tar. By contrast,
when leaves reach its peak in summer, bare soil and tree trunk are
likely to be covered by tree canopy, which significantly reduces the
spectral confusion. Such seasonal variations in Binghamton in
summer and winter can be clearly seen in Fig. 11A and B, respec-
tively. This explanation of plant phenology is also supported by
the literature with study areas in the same climate zone (Wu and
Yuan, 2007; Weng et al., 2009). In the case of multi-temporal com-
bination (using two and more seasons) in this region, the perfor-
mance of the combinations with the summer image is constantly
better than the combination with the winter image when control-
ling for image scenes of other seasons.

For regions with a tropical monsoon climate or a Mediterranean
climate, the experiment results in San Juan and Los Angeles sug-
gest that the performance of fall and winter images is consistently
better than spring and summer. While the conclusion seems the
same for both locations, the causes could be different from each
other. In San Juan, wet season usually ranges from April to Novem-
ber. Dense vegetation, therefore, is always associated with the
abundant moisture in the wet and hot summers, which could affect
the estimation of fractional impervious surface (Zhang et al., 2014,
2016). Due to the spectral similarity between water and dark
impervious surface, water may be mistaken as impervious surface
in some natural landscapes (e.g., wetlands) as urban impervious
surface when using summer images. In the dry season with less
water content in winter in San Juan, such spectral confusion is
likely to be less sever and the influence on impervious surface esti-
mation be less apparent. By contrast, summer is usually dry and
hot in Los Angeles, and precipitation occurs mainly in winters with
mild temperature. Thus, quite a few bare soil and non-
photosynthesis vegetation (NPV) are exposed in summers, while
they are heavily covered by growing vegetation in mild and moist
winters. Such seasonal change of land covers in Los Angeles in
summer and winter can be apparently discerned in
Fig. 11C and D, respectively. Therefore, the preference of winter
images in tropical monsoon and subtropical Mediterranean cli-
mates supplements the existing literature in which summer
images used to be suggested and widely used.

5.3. Performance with different environmental and urban settings

An effort in our research is to perform direct and objective com-
parisons on fractional impervious surface estimation with different
environmental settings under different climate conditions. For
temperate regions with a humid continental climate, the Bingham-
ton analysis shows that, even using a single-date image, our results
based on random forest can achieve a satisfactory level with an
RMSE of 8.26%, an MAE of 4.64%, and an SE of 1.39%. This is slightly
better than the indicators described in Wu and Yuan (2007; with
an RMSE of 10.22%, and an SE of �4.32% in Ohio), Hu and Weng
(2009; with an RMSE of 11.8%, and an MAE of 8% in Indiana),
Weng et al. (2009 ; with an RMSE of 13.2%, an MAE of 8.7% in Indi-
ana), and Deng (2016; with an RMSE of 13.94%, an MAE of 10.13%,
and an SE of �2.56% in Ohio). For tropical and subtropical regions
with a monsoon climate, similar better results can be observed in
San Juan: a favorable level can be reached with an RMSE of



Fig. 10. Comparison of different seasonal combinations using three or more Landsat images in Los Angeles, California.

Fig. 11. Comparison of different seasons in two study areas using natural color composites. The first row shows the summer images, and the second row shows the winter
images. The first column is Binghamton, New York, and the second column is Los Angeles, California.
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9.37%, an MAE of 5.7%, and an SE of �1%. These results somewhat
outperform the estimation metrics reported in other studies under
a similar monsoon climate, such as Powell et al. (2007; with an
MAE of 13.8% and an SE of 5.2% in Manaus, Brazil), Li et al.
(2013; with an RMSE of 15% in Brazilian Amazon), Fan et al.
(2015; with an RMSE of 10%, an MAE of 8.6%, and an SE of 7.8%.
in Guangzhou, China), and Tsutsumida et al. (2016; with an RMSE
of 16.39% in Jakarta, Indonesia). For subtropical regions with a
Mediterranean climate, our results in this study are slightly better
than other studies as well, in which a slop of 0.91, an intercept of
5.1, a coefficient of determination of 0.86, an RMSE of 10.6%, an
MAE of 6.3% and an SE of 3.1% are achieved. Comparatively, under
the same climate condition, the value of R-squared reported in
Roberts et al. (2012) is 0.79 at 15-m resolution and 0.72 at 60-m
resolution, respectively. The slope in their work is 1.432 at 15-m
resolution and 1.443 at 60-m resolution, while the intercept is
7.7% at 15-m resolution and 11% at 60-m resolution. All these com-
parisons may be explained by the findings in previous studies that
machine learning methods are tend to have a better performance
than SMA approaches when a large sample size is available
(Deng and Wu, 2013e; Belgiu and Drăgut�, 2016). By comparing
the results in our experiments with various combinations, the tem-
perate region with a continental climate has consistently better
performances than the other two regions. Although direct and
comprehensive comparisons have been performed in this research,
more studies in other locations with various climate conditions are
warranted in the future to fully understand the performance of
fractional cover estimation using machine learning methods.
5.4. The impacts of multi-season scene combinations

In addition to examining the seasonal effect using a single-date
image, we also investigated whether the inclusion of as many
multi-temporal images as possible can enhance the accuracy of
fractional impervious surface estimation. When compared the per-
formance of using a single-date image with multi-season combina-
tions, it can be found that the improvement of estimation accuracy
displays a similar trend of improvement in both Binghamton and
San Juan. The accuracy metrics in Tables 2 and 3 show that, in
Binghamton and San Juan, an RMSE increment of approximately
1.5% can be reached by using two TOA images when compared
with a single-date image. Comparatively, the performances in Los
Angeles are relatively stable, and the accuracy indicators have no
obvious increase or decrease (also see Tables 2 and 3). However,
when more than two multi-season images were collectively used
(i.e., the combinations of three and four images of different sea-
sons), the increment still exists, but it is as low as 0.2% and is
almost negligible. Our finding is similar to and confirms that of
Coulston et al. (2013). Namely, more data may not significantly
increase the performance of empirical machine learning models,
and the use of parsimonious number of images may be sufficient
for fractional land cover mapping, especially when using machine
learning approaches.
6. Conclusions

Urban impervious surface information is of great necessity in a
variety of urban analyses. Because of the mixed nature of satellite
imagery, subpixel urban impervious surface product provides more
information than per-pixel classification (Zhang et al., 2012, 2014).
Subpixel urban impervious surface mapping is challenging due to
the heterogeneity of urban environments (Weng et al., 2009;
Deng, 2016). During such mapping process, factors that affect the
accuracy of subpixel cover estimation include atmospheric correc-
tion, climate conditions, seasonal effect, and urban settings. These
factors, however, have not been well studied. This research per-
formed direct and comprehensive examinations to explore the
impacts of these factors when using Random Forest, and provides
solutions to alleviate these influences with the publicly available
Landsat images. Four conclusions can be drawn based on the
repeatable experiments from this study. First, the performance of
TOA reflectance imagery is slightly better than that of surface
reflectance imagery provided by USGS in estimating fraction of
impervious surface area. Second, the effect of imagery with leaf-
on/off season varies, and is contingent upon different climate
regions. Specifically, humid continental areas may prefer the leaf-
on imagery (e.g., summer), while the tropical monsoon and
Mediterranean regions seem to favor the fall and winter imagery.
Third, the overall estimation performance in the humid continental
area is consistently better than the other two regions in tropical
monsoon and Mediterranean areas. Finally, improvements can be
observed by using multi-season imagery, but the increments
become less obvious when including more than two seasons. With
the easy replicability of these experiments, the strategy and results
of this research can improve and accommodate regional/national
subpixel land cover mapping (e.g., the products of NLCD percent
impervious surface and tree canopy) for large-scale environmental
and climate change studies.
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