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ABSTRACT: 14 

Remote sensing has proven a useful way of evaluating long-term trends in vegetation “greenness” through 15 

the use of vegetation indices like Normalized Differences Vegetation Index (NDVI) and Enhanced 16 

Vegetation Index (EVI).  In particular, analyses of greenness trends have been performed for large areas 17 

(continents, for example) in an attempt to understand vegetation response to climate. These studies have 18 

been most often used coarse resolution sensors like Moderate Resolution Image Spectroradiometer 19 

(MODIS) and Advanced Very High Resolution Radiometer (AVHRR). However, trends in greenness are 20 

also important at more local scales, particularly in and around cities as vegetation offers a variety of 21 

valuable ecosystem services ranging from minimizing air pollution to mitigating urban heat island effects. 22 
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To explore the ability to monitor greenness trends in and around cities, this paper presents a new way for 23 

analyzing greenness trends based on all available Landsat 5, 7, and 8 images and applies it to Guangzhou, 24 

China. This method is capable of including the effects of land cover change in the evaluation of greenness 25 

trends by separating the effects of abrupt and gradual changes, and providing information on the timing of 26 

greenness trends. 27 

 An assessment of the consistency of surface reflectance from Landsat 8 with past Landsat sensors 28 

indicates biases in the visible bands of Landsat 8, especially the blue band. Landsat 8 NDVI values were 29 

found to have a larger bias than the EVI values; therefore, EVI was used in the analysis of greenness 30 

trends for Guangzhou. In spite of massive amounts of development in Guangzhou from 2000 to 2014, 31 

greenness was found to increase, mostly as a result of gradual change. Comparison of the greening 32 

magnitudes estimated from the approach presented here and a Simple Linear Trend (SLT) method 33 

indicated large differences for certain time intervals as the SLT method does not include consideration for 34 

abrupt land cover changes. Overall, this analysis demonstrates the importance of considering land cover 35 

change when analyzing trends in greenness from satellite time series in areas where land cover change is 36 

common. 37 

Key words: CCDC; greenness; trend; Guangzhou; Landsat; time series; land cover change; abrupt; 38 

gradual 39 

1. Introduction 40 

1.1. Background 41 

One high profile use of satellite observations has been to track trends in the greenness of vegetation 42 

through time, primarily as an indicator of ecosystem response to changes in climate. Increased vegetation 43 

growth has been observed in various locations, including the Northern Hemisphere (Myneni et al., 1997; 44 

Zhou et al., 2001; Jong et al., 2012; Piao et al., 2015), Australia (Donohue et al., 2009) and the Sahel 45 

region in Central Africa (Olsson et al., 2005; Hermann et al., 2005). The opposite trend (commonly 46 
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referred to as browning) has also been observed in the forests of the Congo (Zhou et al., 2014) and the 47 

arid southwestern United States (Breshears et al., 2005) in recent decades.   48 

Another context for monitoring trends in vegetation greenness concerns the effect of human activity on 49 

landscapes. Particularly in urban environments, human actions can lead to either increases or decreases in 50 

vegetation greenness. For example, conversion of agricultural land or forests to developed land usually 51 

results in a decrease in vegetation greenness. Conversely, planting of vegetation in urban environments is 52 

a common element of urban planning and can lead to increases in greenness.    53 

Vegetation in and around urban environments has been recognized as providing valuable ecosystem 54 

services, including the regulating services of climate regulation, water filtration, and air purification. 55 

Trees in urban areas can remove harmful air pollutants including sulfur dioxide, nitrogen oxide, carbon 56 

monoxide, and air particulate matter. For example, Nowak et al (2006) estimated that trees and shrubs in 57 

cities in the United States remove approximately 711,000 metric tons of air pollutants in one year, a 58 

contribution valued at $3.8 billion USD. Similarly, Jim and Chen (2008) modeled the effects of forest 59 

vegetation in Guangzhou for the year 2000 and found that the urban forest removed approximately 312.03 60 

Mg of air pollutants.  61 

Vegetation can also have significant effects on local climate. For example, an addition of approximately 62 

three trees per building in Chicago is estimated to provide savings of about $50 to $90 per building 63 

through heating and cooling cost reductions (McPherson et al 1997). Trees insulate building in the winter 64 

by reducing wind speeds and help cool buildings in the summer by increasing shade and 65 

evapotranspiration. In addition to contributing many ecosystem services, urban vegetation improves the 66 

quality of life for residents. Jim and Chen (2006) found that citizens of Guangzhou, China valued access 67 

to greenspaces very highly, with 96% of people surveyed willing to pay for access to greenspaces and a 68 

collective willingness to pay for greenspaces that was six times the city's annual expenditure for 69 

development and maintenance of urban greenspaces.  70 
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 Access to these ecosystem services is especially important in large and rapidly growing urban 71 

environments because the process of urbanization frequently degrades or removes these services. Cities in 72 

China have been undergoing dramatic expansion and intensification since the country adopted the 73 

“reform and openness” policy in 1978 (Hun & Wong, 1994; Anderson & Ge, 2004). The total urban area 74 

in 1996 was almost triple the extent in 1949 (Lin and Ho, 2003). The rate of urban expansion in the Pearl 75 

River Delta has been especially noteworthy during the past few decades, increasing more than 300% 76 

between 1988 and 1996 (Seto et al., 2002). Guangzhou (Canton), the capital of Guangdong Province 77 

located at the mouth of the Pearl River, is one of the oldest and largest cities in China. It has been the 78 

center of dramatic economic development and urban expansion (Fu et al., 2013). Approximately 92 km2 79 

of water adjacent to the outlet of the Pearl River were reclaimed to islands between 1978 and 1998, most 80 

of which have already been developed (Chen et al., 2005). Between 1978 and 2013, 40% of farmlands 81 

were converted to other uses (Guangzhou Statistics Yearbook, 2014). Meanwhile, forest cover underwent 82 

large fluctuations; for example, based on Guangdong forest inventory data, forest cover increased from 31% 83 

to 40% between 1993 and 2003 and decreased from 40% to 36% between 2003 and 2013. In 2000, the 84 

Guangzhou government proposed a new development strategy for transforming the city into a world-class 85 

metropolis by 2010 (Weng & Yang, 2003). With this vast amount of human activity and the new 86 

development strategy announced in 2000, the question of whether greenness has declined or increased in 87 

Guangzhou merits further investigation. 88 

1.2. Satellite remote sensing of vegetation greenness 89 

Satellite remote sensing provides the opportunity to analyze vegetation condition over large areas. 90 

Vegetation Indices (VIs), such as the Normalized Difference Vegetation Index (NDVI) and Enhanced 91 

Vegetation Index (EVI), are widely used to analyze trends in vegetation greenness, due to their high 92 

correlation with the amount of chlorophyll, vegetation leaf area, and photosynthetic capacity (Tucker, 93 

1979; Myneni et al., 1995; Carlson & Ripley, 1997; Huete et al.2002; Olofsson & Eklundh, 2007). 94 

Compared to NDVI, EVI is generally more robust to atmospheric and soil background influences, and 95 
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saturates less at high Leaf Area Index (LAI) values (Huete et al., 2002).  Analysis of trends in vegetation 96 

greenness have generally been focused on very large areas, such as entire continents or portions of 97 

continents, and the satellite data employed have been relatively coarse in spatial resolution (Myneni et al., 98 

1997; Zhou et al., 2001; Olofsson and Eklundh, 2007; Olofsson et al., 2008; Jong et al., 2012; Piao et al., 99 

2015). For example, the spatial resolution of the NDVI and EVI datasets generated from Moderate 100 

Resolution Image Spectroradiometer (MODIS) is either 250 m, 500 m or 1 km (Huete et al., 2002), and 101 

the spatial resolution of NDVI datasets produced from Advanced Very High Resolution Radiometer  102 

AVHRR is 8 km (Tucker et al., 2005). To better characterize greenness in and around cities, higher 103 

spatial resolution is required.  104 

The sensors of Landsat 4, 5, 7, and 8 provide 30-meter resolution and 16-day revisit cycle (Wulder et al., 105 

2008), allowing effective monitoring of many human-induced land cover changes (Masek et al., 2000; 106 

Seto & Fragkias, 2005; Yuan et al., 2005; Kennedy et al., 2007; Huang et al., 2010), as well as 107 

characterizing greenness trends at local or regional scales for a variety of environments, including forests 108 

(Vogelmann et al., 2009; Vogelmann et al., 2012; Lehmann et al., 2013), drylands (Sonnenschein et al., 109 

2011), and Arctic tundra  (Fraser et al., 2012).   It is important to note, that the work presented in this 110 

paper is focused on urban environments, and as such represents a different context for monitoring 111 

greenness trends with Landsat data as human activity is the primary driver of changes in greenness.  In 112 

particular, land cover change generally causes abrupt changes in vegetation greenness, and in the work 113 

presented here we attempt to separate these abrupt changes from more gradual changes in vegetation 114 

greenness. 115 

Most studies of vegetation trends using Landsat are based on the Thematic Mapper (TM) sensor on 116 

Landsat 4 and 5 and the Enhanced Thematic Mapper Plus (ETM+) sensor on Landsat 7, because these 117 

sensors are well calibrated with each other (Teillet et al., 2001; Barsi et al., 2003; Chander et al., 2009). 118 

Although Landsat 5 is no longer in service, and Landsat 7 has been hampered by the failure of the Scan 119 
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Line Corrector (SLC-off), the successful launch of Landsat 8 has provided continuity of moderate spatial 120 

resolution data that can be used for long-term trend analysis (Roy et al., 2014). 121 

The Landsat 8 satellite carries two sensors, the Operational Land Imager (OLI) and the Thermal Infrared 122 

Sensor (TIRS) (Irons et al., 2012). Compared to TM and ETM+, OLI has two new spectral bands: an 123 

ultra-blue band (0.43-0.45 um), and a cirrus band (1.36-1.39 um) (Table 1). The ultra-blue band is 124 

designed primarily for characterizing coastal waters and atmospheric aerosol properties, and the cirrus 125 

band is mainly intended to facilitate better detection of thin cirrus clouds (Kovalskyy & Roy, 2015; Zhu 126 

& Woodcock, 2015). In general, the OLI bands are spectrally narrower than the corresponding ETM+ 127 

bands, especially in the near-infrared (NIR) region. TIRS has two thermal bands that are also narrower 128 

than the ETM+ thermal bands, and are located at different wavelengths for the purposes of retrieving 129 

surface temperature (Rozenstein et al., 2014). Considering all these factors, it is important to ensure that 130 

data from Landsat 8 are consistent with data from the previous Landsat sensors before it is combined with 131 

data from other sensors in trend analysis. 132 

To date, several studies have explored the consistency of data from Landsat 7 and Landsat 8 by 133 

comparing clear-sky observations for the same location, but acquired 8 days apart (Flood 2014; Li et al., 134 

2014). These studies have been based on the assumption that there is no phenology or land cover change 135 

between acquisitions. It has been reported that the top-of-atmosphere reflectance differences between the 136 

two sensors can be as large as 6%, with differences in surface reflectance of about 2% and NDVI 137 

differences about 5% (Flood 2014). Conversely, Li et al. (2014) analyzed the consistency between sensors 138 

for a variety of vegetation indices and surface reflectances and concluded thatETM+ and OLI images are 139 

similar enough to be used as complementary data. However, in the analysis of greening trends, a 5% 140 

change in NDVI can be significant. Therefore, it is important to quantify the differences between Landsat 141 

8 and prior Landsat sensors before their combined use for trend analysis.  142 

1.3. Methods for analyzing greenness trends 143 
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Most studies of greenness trends assume there is little or no land cover change in the study area and are 144 

interested in overall trends related to external factors like climate (Myneni et al., 1997; Sonnenschein et 145 

al., 2011; Vogelmann et al., 2012; Fraser et al., 2012; Bhatt et al, 2013; Lehmann et al., 2013; Piao et al., 146 

2015). Based on a simple linear regression of the VIs, a slope coefficient can be easily generated, which 147 

has typically been used to represent the long term trend in greenness (referred to here as the Simple 148 

Linear Trend (SLT) method). This method may work well for areas that are not undergoing significant 149 

land cover change, but for areas characterized by significant land cover change, this approach may 150 

provide results that are misleading or incomplete. The effect of land cover change is especially relevant in 151 

Guangzhou, as it is one of the fastest growing megacities in the world (Seto et al., 2002). If a place has 152 

been disturbed multiple times, the SLT model can produce misleading results. Therefore, for accurate 153 

quantification of trends in greenness in megacities such as Guangzhou, we need to distinguish between 154 

the abrupt changes caused by land cover change from gradual changes (greening or browning) in places 155 

where land cover change has not occurred. 156 

Many algorithms have been developed for detecting land cover change by analyzing time series of 157 

satellite data (Yang & Lo, 2002; Seto & Fragkias, 2005; Kennedy et al., 2007; Huang et al., 2010; Masek 158 

et al., 2008; Verbesselt et al., 2010; Hermosilla et al., 2015), but few studies have included land cover 159 

change information in analyzing greenness trends.  In fact, in most studies there has been an explicit 160 

effort to exclude areas of land cover change from analysis of greenness trends as climate rather than the 161 

effect of human activity was the primary focus of the studies. However, Jong et al. (2012) separately 162 

quantified abrupt and gradual changes globally based on time series of NDVI from NOAA AVHRR using 163 

the Breaks For Additive Season and Trend (BFAST) procedure (Verbesselt et al., 2010). This innovative 164 

work laid a foundation upon which the work presented here is based. However, there are several 165 

differences between what we propose and that of Jong et al. (2012). For example, their work was done at 166 

coarse spatial resolution (~8km), and thus may not accurately detect human induced land cover changes 167 

like those found in Guangzhou that usually occur at finer spatial scales. Also, since Jong et al. (2012) 168 
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relied solely on NDVI, it is possible that land cover changes that are more apparent in other spectral 169 

dimensions may have been missed. One of the difficulties associated with working at AVHRR scales is 170 

that it is hard to identify land cover types, as well as land cover change. Jong et al. (2012) used the 2009 171 

MODIS land cover product (Friedl et al., 2003; Friedl et al., 2010) to represent land cover from 1982 to 172 

2008. While this may not introduce large errors at the global scale, it could be problematic for local or 173 

regional scale studies, such as in Guangzhou. In this study, we use the CCDC (Continuous Change 174 

Detection and Classification) algorithm (Zhu & Woodcock, 2014) and all available Landsat data for 175 

detecting both abrupt and gradual changes in greenness, as well as for providing land cover information at 176 

scales relevant to human activities. Therefore, we have the opportunity to compare the differences in 177 

greenness trends depending on whether or not land cover change is taken into account. 178 

Three major questions are considered in this study: 179 

1) Has the greenness of Guangzhou been increasing or decreasing in the period from 2000 to 2014?   180 

2) Can Landsat 8 data be combined with data from prior Landsat sensors for analysis of greenness trends? 181 

3) How does accounting for the influence of land cover change affect monitoring of greenness trends? 182 

2. Study area and data 183 

2.1. Study area 184 

Guangzhou (22°26'–23°56'N, 112°57'–114°03'E) is located on the northern edge of the Pearl River Delta 185 

in South China (Figure 1). It covers an area of 7,434 km2, with a population of 8.32 million as of 2012 186 

(Guangzhou Statistic Yearbook, 2014). The warm and rainy climate provides favorable conditions for 187 

vegetation growth. Guangzhou City is composed of ten urban districts and two country-level cities. The 188 

economy of Guangzhou has grown tremendously with the regional Gross Domestic Product increasing 189 

from $32 billion in 1990 to $1688 billion in 2014 (Guangzhou Yearbook Compilation Committee, 2010).  190 
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2.2. Landsat data 191 

All available Level 1 Terrain (Corrected) (L1T) Landsat 5, 7, and 8 images acquired from 1999 to 2014 192 

with more than 20% clear observations (i.e. pixels with no clouds, cloud shadows or snow) were used for 193 

WRS-2 Path 122 and Row 44 . The percentage of clear observations was estimated by Fmask, which is an 194 

object-based cloud, cloud shadow, and snow detection algorithm (Zhu & Woodcock, 2012; Zhu et al., 195 

2015a). A total of 194 Landsat images were used in the analysis, of which 61 images were from Landsat 5 196 

(acquired from January 26, 2000 to April 27, 2010), 120 images were from Landsat 7 (acquired from 197 

October 14, 1999 to June 1, 2014), and 13 images were from Landsat 8 (acquired from July 8, 2013 to 198 

September 29, 2014). For each Landsat image, 7 spectral bands were used in this study: three visible 199 

bands (blue, green, and red), one NIR band, two shortwave-infrared bands (SWIR 1 and SWIR 2), and a 200 

thermal infrared (TIR) band (indicated by bold letters in Table 1). All 7 spectral bands were used for land 201 

cover classification, and 5 spectral bands were applied for change detection. The blue and TIR bands were 202 

excluded in the change detection analysis due to their sensitivity to atmospheric contamination (Zhu et al., 203 

2015b). To check the consistency of Landsat 8 data with earlier Landsat data, we assessed surface 204 

reflectance of the 6 optical bands and two VIs (NDVI and EVI).  205 

2.3. Training data 206 

Training data were extracted from the 14-category (see Table 2 for class descriptions) Land Use 207 

Inventory Map of Guangzhou of 2010 (Guangzhou Land Resource Administration Bureau, 2010). The 208 

Land Use Inventory Map was generated based on field visits and interpretation of aerial photographs. A 209 

total of 600 pixels were randomly selected from each of the 14 land cover categories as training data. 210 

Each pixel in the training data set was further examined using high resolution images in Google EarthTM 211 

and Landsat images to ensure the land cover labels were correctly assigned. After removing pixels that 212 

were deemed incorrect, the remaining 5,070 pixels were used as input to a Random Forest classifier 213 
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(Breiman, 2001; Gislason et al., 2006; Zhu et al., 2012) (see Table 2 for sample size of each land cover 214 

class category). 215 

3. Methods 216 

3.1. Image preprocessing 217 

All images were atmospherically corrected to surface reflectance. The Landsat 5 and 7 images were 218 

processed by the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Schmidt et al., 219 

2013) and the Landsat 8 images were processed by the Landsat 8 Surface Reflectance (L8SR) system 220 

(Landsat 8 Product Guide). There are two main differences between the two processing systems. First, 221 

LEDAPS is based on the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative 222 

transfer model (Masek et al., 2006), whereas the L8SR uses an internal algorithm (Landsat 8 Product 223 

Guide). Second, the data sources for atmospheric composition (i.e. pressure, water vapor, air temperature, 224 

ozone, and aerosol optical thickness) are different. In LEDAPS, pressure, water vapor, air temperature, 225 

and ozone data are derived from the National Centers for Environmental Prediction (NCEP) Grid and the 226 

aerosol optical thickness is derived directly from the Landsat imagery. Conversely, the atmospheric 227 

information in the L8SR system is mainly derived from MODIS products. As previously reported in other 228 

studies it is possible that the differences in the methodology of atmospheric correction may contribute to 229 

inconsistency in surface reflectance (Schroeder et al., 2006). The degree to which this impacts the 230 

consistency of Landsat 8 and previous Landsat sensors will be discussed in more detail in Section 4.2.  231 

Pixels with clouds, cloud shadows, and snow were removed based upon a two-step method. The first step 232 

involves use of the Fmask algorithm to identify clouds and their shadows in a single Landsat image (Zhu 233 

& Woodcock, 2012; Zhu et al., 2015a). The second step involves use of the Tmask algorithm to further 234 

refine the dataset based on the use of multitemporal information (Zhu & Woodcock, 2014b). 235 

3.2. The CCDC algorithm 236 
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The CCDC algorithm makes use of all available Landsat data to estimate time series models and uses the 237 

models to predict future observations (Zhu & Woodcock, 2014a; Zhu et al., 2015b). If the values of future 238 

observations are outside of the predicted range, a break is defined in the time series, and new time series 239 

models will be estimated once there are enough observations available. As the algorithm combines 240 

several spectral bands to define a break, it has the potential of detecting many kinds of land cover change. 241 

The time series models are composed of harmonic models (Davis, 1986; Rayer, 1971) that capture the 242 

seasonality of the time series, and a slope component that is used for estimating trends. The breaks found 243 

in the time series provide information about abrupt changes, such as those caused by land cover changes. 244 

By counting how many breaks each pixel has, we are able to generate maps of the total number of 245 

changes. On the other hand, by recording when the break is detected, we are able to provide maps of the 246 

time of the most recent change. 247 

Instead of classifying the original Landsat images, the coefficients defining the time series models and the 248 

Root Mean Square Errors (RMSE) calculated during model estimation are used as the inputs for land 249 

cover classification. The Random Forest classifier was applied to each time series interval to provide land 250 

cover information at any given time covered by the time series model. Figure 2 demonstrates how the 251 

CCDC algorithm works for a pixel that has undergone multiple land cover changes in Guangzhou. The 252 

identified changes are designated by black circles. For this particular pixel, and for each spectral band, 253 

there are three models estimated and two breaks detected.  254 

3.3. Analysis of Landsat 8 consistency with prior Landsats 255 

After the time series models are estimated and changes are identified, we can predict the surface 256 

reflectance for all Landsat optical bands (Zhu et al., 2015b). Based on the accuracy assessment in Zhu et 257 

al. (2015b), the difference between the predicted values and the actual observations is similar in 258 

magnitude to the noise level (~2 DNs) in Landsat images (Zhu et al., 2015b; Masek et al., 2001). As 259 

CCDC is capable of predicting all 6 optical bands, we can also predict any VIs that can be calculated 260 
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based on the predicted optical bands. Moreover, since the CCDC algorithm models both seasonal 261 

differences and abrupt land cover changes, Landsat 8 observations can be predicted based on historical 262 

Landsat 5 and 7 data without being influenced by these factors.   263 

Before predicting Landsat 8 observations, we first analyzed the prediction accuracy of the CCDC 264 

algorithm for the study area. Considering that Landsat 5 and 7 data are well calibrated with each other, it 265 

is assumed that the difference between predicted and observed Landsat 5 and 7 data would be close to 266 

zero if the prediction is accurate. Therefore, we predicted the surface reflectance in 6 optical bands and 267 

two VIs for all clear Landsat 5 and 7 observations. Note that the predicted VIs were not directly predicted 268 

by model estimation of the observed VIs, but they were calculated based on model estimation of three 269 

optical bands (see Equation 2 for details). By comparing model predictions and actual observations of 270 

Landsat 5 and 7 data, we calculated the mean differences for all 6 optical bands and two VIs. Later, we 271 

tested the consistency of Landsat 8 data by comparing clear Landsat 8 observations with predicted 272 

Landsat 8 values based on the time series model estimated by data from Landsat 5 and 7. Because the 273 

predictions are more accurate if more observations are available, we only used pixels that had not 274 

changed since 2000 for the comparison. Changes in atmospheric conditions could also influence the 275 

analysis, therefore, if the difference between predictions and observations was large (more than 0.1 in 276 

surface reflectance, or more than 1 in VIs), the observation was excluded from the analysis.  277 

3.4. Trend analysis 278 

Change in greenness can come from three distinct sources: seasonal change, gradual change and abrupt 279 

change (Verbesselt et al., 2010; Zhu & Woodcock, 2014). Seasonal change, mostly driven by vegetation 280 

phenology, has a cyclic pattern that is often treated as a source of noise in analysis of greenness trends. 281 

Gradual change, caused by vegetation growth, climate change, land degradation, extended drought, pests 282 

as well as other factors, changes greenness slowly over long time periods (5+ years), whereas abrupt 283 

change, generally induced by land cover change, can have a large impact on greenness within a short time 284 
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period (1~2 years). If there is no land cover change, a simple method like SLT works well, as only 285 

gradual change will contribute to the greenness trends. However, for places experiencing land cover 286 

change, the abrupt change can skew the analysis of greenness trends (Kennedy et al., 2010; Cohen et al., 287 

2010). Figure 3 illustrates how the abrupt and gradual changes in greenness (EVI) are calculated based on 288 

the CCDC results. The pixel has changed twice since 2000. For each spectral band, three time series 289 

models were estimated and the start and end time of each model were also recorded. Therefore, we were 290 

able to estimate the overall value for each spectral band for each pixel at the start and end of each time 291 

series model (Equation 1). These values can be used to estimate the overall VI value at the start and end 292 

of each segment (Equation 2). By assuming that the computed VIs in each time series model would only 293 

change linearly, we generate the predicted overall VI segments by linking 𝑉𝐼𝑠𝑡𝑎𝑟𝑡 and 𝑉𝐼𝑒𝑛𝑑 (Figure 3). 294 

The accumulated gradual change in each pixel is the sum of the differences in VI at the end VI (𝑉𝐼𝑒𝑛𝑑,𝑗) 295 

and the start (𝑉𝐼𝑠𝑡𝑎𝑟𝑡,𝑗) of all segments (Equation 3), and the accumulated abrupt change is the sum of the 296 

differences in VI at the start of the next segment (𝑉𝐼𝑠𝑡𝑎𝑟𝑡,𝑗+1) and the end of the current segment (𝑉𝐼𝑒𝑛𝑑,𝑗) 297 

(Equation 4). The total CCDC-based estimate of change in greenness is the sum of the accumulated 298 

gradual changes and the accumulated abrupt changes (Equation 5). 299 

𝜌𝑠𝑡𝑎𝑟𝑡,𝑖,𝑗 = 𝑎0,𝑖,𝑗 + 𝑡𝑠𝑡𝑎𝑟𝑡,𝑖,𝑗 × 𝑐1,𝑖,𝑗                                                                                             (1a) 300 

𝜌𝑒𝑛𝑑,𝑖,𝑗 = 𝑎0,𝑖,𝑗 + 𝑡𝑒𝑛𝑑,𝑖,𝑗 × 𝑐1,𝑖,𝑗                                                                                                 (1b) 301 

Where,         302 

𝑎0,𝑖,𝑗: Coefficient for overall value for the ith band and the jth time series model;   303 

𝑐1,𝑖,𝑗: Coefficient for inter-annual change (slope) for the ith band and the jth time series model;                                                                         304 

i: The ith band; 305 

j: The jth time series model; 306 
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𝑡𝑠𝑡𝑎𝑟𝑡,𝑖,𝑗: Start (Julian date) of the ith band and the jth time series model; 307 

𝑡𝑒𝑛𝑑,𝑖,𝑗: End (Julian date) of the ith band and the jth time series model; 308 

𝜌𝑠𝑡𝑎𝑟𝑡,𝑖,𝑗: Overall value at the start of the ith band and the jth time series model; 309 

𝜌𝑒𝑛𝑑,𝑖,𝑗: Overall value at the end of the ith band and the jth time series model. 310 

𝑉𝐼𝑠𝑡𝑎𝑟𝑡,𝑗 =
𝜌𝑠𝑡𝑎𝑟𝑡,𝑁𝐼𝑅,𝑗 − 𝜌𝑠𝑡𝑎𝑟𝑡,𝑅𝑒𝑑,𝑗

𝜌𝑠𝑡𝑎𝑟𝑡,𝑁𝐼𝑅,𝑗 + 𝜌𝑠𝑡𝑎𝑟𝑡,𝑅𝑒𝑑,𝑗
(𝑁𝐷𝑉𝐼) 𝑜𝑟 2.5 ×

𝜌𝑠𝑡𝑎𝑟𝑡,𝑁𝐼𝑅,𝑗 − 𝜌𝑠𝑡𝑎𝑟𝑡,𝑅𝑒𝑑,𝑗

𝜌𝑠𝑡𝑎𝑟𝑡,𝑁𝐼𝑅,𝑗 + 6×𝜌𝑠𝑡𝑎𝑟𝑡,𝑅𝑒𝑑,𝑗−7.5×𝜌𝑠𝑡𝑎𝑟𝑡,𝐵𝑙𝑢𝑒,𝑗+1
 (𝐸𝑉𝐼)         (2a)                                       311 

𝑉𝐼𝑒𝑛𝑑,𝑗 =
𝜌𝑒𝑛𝑑,𝑁𝐼𝑅,𝑗 − 𝜌𝑒𝑛𝑑,𝑅𝑒𝑑,𝑗

𝜌𝑒𝑛𝑑,𝑁𝐼𝑅,𝑗 + 𝜌𝑒𝑛𝑑,𝑅𝑒𝑑,𝑗
(𝑁𝐷𝑉𝐼) 𝑜𝑟 2.5 ×

𝜌𝑒𝑛𝑑,𝑁𝐼𝑅,𝑗 − 𝜌𝑒𝑛𝑑,𝑅𝑒𝑑,𝑗

𝜌𝑒𝑛𝑑,𝑁𝐼𝑅,𝑗 + 6×𝜌𝑒𝑛𝑑,𝑅𝑒𝑑,𝑗−7.5×𝜌𝑒𝑛𝑑,𝐵𝑙𝑢𝑒,𝑗+1
 (𝐸𝑉𝐼)                      (2b) 312 

Where,                                                                          313 

𝑉𝐼𝑠𝑡𝑎𝑟𝑡,𝑗: Estimated overall VI value at the start of jth time series model;  314 

𝑉𝐼𝑒𝑛𝑑,𝑗: Estimated overall VI value at the end of jth time series model.  315 

𝐺𝑟𝑎𝑑𝑢𝑎𝑙 =  ∑ (𝑉𝐼𝑒𝑛𝑑,𝑗 − 𝑉𝐼𝑠𝑡𝑎𝑟𝑡,𝑗
𝐾
𝑗=1 )                                                                                             (3) 316 

K: Total number of time series models estimated for a pixel; 317 

𝐺𝑟𝑎𝑑𝑢𝑎𝑙: Accumulated gradual greenness change based on the CCDC method. 318 

𝐴𝑏𝑟𝑢𝑝𝑡 =  ∑ (𝑉𝐼𝑠𝑡𝑎𝑟𝑡,𝑗+1 − 𝑉𝐼𝑒𝑛𝑑,𝑗
𝐾−1
𝑗=1 )                                                                                          (4) 319 

Where, 320 

K: Total number of time series models estimated for a pixel; 321 

𝐴𝑏𝑟𝑢𝑝𝑡: Accumulated abrupt greenness change based on the CCDC method. 322 

𝑇𝑜𝑡𝑎𝑙(𝐶𝐶𝐷𝐶) =  𝐺𝑟𝑎𝑑𝑢𝑎𝑙 + 𝐴𝑏𝑟𝑢𝑝𝑡                                                                                             (5) 323 
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Where, 324 

𝑇𝑜𝑡𝑎𝑙(𝐶𝐶𝐷𝐶): Accumulated total greenness change based on the CCDC method. 325 

Figure 3 illustrates how change in EVI was estimated using the breaks found by CCDC for the same pixel 326 

shown in Figure 2. The red points are the EVI values for all available clear Landsat 5 observations; the 327 

green points are Landsat 7 observations; and the blue points are Landsat 8 observations. Points A, C, and 328 

E are the EVI values at the start of each time series segment, and points B, D, and F are the corresponding 329 

EVI values at the end of segments. In this case, it is possible to calculate the gradual change values: BA (-330 

0.2430), DC (0.0133), and FE (0.0379). We could also calculate the magnitude of the two abrupt change 331 

values: CB (-0.0101) and ED (0.0555). By summing these differences, the total EVI change from 2000 to 332 

2014 (FEDCBA) is estimated as -0.1464.   333 

The CCDC greenness change estimates was compared with the widely used SLT method which was 334 

applied to all pixels acquired during the growing season (April-October). The SLT model contains a slope 335 

coefficient (Equation 6) that provides the greenness trend information. By multiplying the slope 336 

coefficient by the total time, the magnitude of total greening change can be calculated (Equation 7). 337 

𝑉𝐼𝑡 = α + β × t                                                                                                                            (6) 338 

Where, 339 

α: Constant; 340 

β: Slope; 341 

t: Time (Julian date) of the observation; 342 

𝑉𝐼𝑡: Model estimated VI value for a pixel at time t. 343 

𝑇𝑜𝑡𝑎𝑙(𝑆𝐿𝑇) =  β × 𝑡𝑡𝑜𝑡𝑎𝑙                                                                                                              (7) 344 
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Where, 345 

𝑡𝑡𝑜𝑡𝑎𝑙: Total time of the time series data; 346 

𝑇𝑜𝑡𝑎𝑙(𝑆𝐿𝑇): Accumulated total greenness change based on the SLT method. 347 

Figure 4 illustrates the SLT method for the same time series shown in Figure 2 and 3. The growing season 348 

observations are the black circles and the estimated SLT model is the blue line. In this case, the SLT 349 

method yielded a very different answer than the CCDC method; the SLT generated a positive trend of 350 

greenness (total EVI increased by 0.1926 since 2000), whereas the CCDC answer was negative (-0.1464). 351 

While the SLT method was able to capture the growing trend after the first disturbance in 2001, EVI 352 

changes that occurred before 2001 were not represented. Moreover, the estimated slope can also be 353 

influenced by the procedure of selecting the growing season observations. Although Forkel et al., 2013 354 

found good results using annual aggregated NDVI time series derived from NOAA AVHRR data, this 355 

may not well for Landsat time series data sets, which have much lower temporal frequency. 356 

3.5 Accuracy assessment and area estimate 357 

Areas of land cover and land change obtained as sums of map units assigned to relevant map classes – 358 

referred to as "pixel counting", are inherently biased because of classification errors. Furthermore, while 359 

an error matrix and accuracy measures can provide precision information, they do not directly provide 360 

information on the uncertainty of areas (Penman et al., 2014). This holds true regardless of the map that 361 

was produced. For these reasons, a sample of reference observations of land cover and land change was 362 

collected for construction of unbiased area estimators and for estimating uncertainty compliant with good 363 

practice guidance (Olofsson et al., 2014). The sample was stratified by a map of 12 classes; 5 stable 364 

classes: forest (evergreen broadleaf, evergreen needleleaf, mixed, and secondary), urban, agriculture 365 

(farmland and orchards), herbaceous (grasslands and shrublands) and water/wetland; and 7 change 366 

classes:  managed forest, forest loss, and gains in forest, herbaceous, agriculture, water and urban. A 367 
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sample of 1245 sample units (pixels) was selected after applying Eq. 5.25 in Cochran (1977) to determine 368 

the sample size.  369 

The sample was manually interpreted by three analysts using time series of Landsat data together with 370 

GoogleEarth™ imagery and aerial photographs. The composition of land covers in each sample unit and 371 

the interpreter’s confidence in the provided reference label (low, moderate and high) was recorded. To 372 

determine final reference labels, units with larger area proportions and higher confidence were selected. 373 

Areas were estimated from the sample by stratified estimation (Cochran, 1977; Olofsson, Foody, Stehman, 374 

& Woodcock, 2013) and confidence intervals were constructed for area estimates. Producer’s and user’s 375 

accuracies of map categories and overall accuracy of the map were computed in addition to area estimates.  376 

4.   Results and discussions 377 

4.1. Change detection and classification maps 378 

Figure 5 shows the change maps generated for Guangzhou between 2000 and 2014. The map on the left 379 

shows the total number of abrupt changes detected while the map on the right shows the year of the most 380 

recent change. A remarkably large proportion of the study area has changed (34%), and most of them 381 

(71%) have changed only once. Most of the changes occurred in two time periods, 2003-2004 (orange) 382 

and 2012-2013 (blue). Figure 6 shows the land cover maps for Guangzhou in 2000 and 2014. The three 383 

urban classes (low density residential, high density residential, and commercial/industrial) have expanded 384 

significantly in the last 15 years. The three forest classes (evergreen broadleaf forest, needleleaf forest, 385 

and mixed forest) have been shrinking and are mainly being replaced by secondary forest. Large areas of 386 

commercial/industrial in the 2014 map were water in 2000 (in the southeastern part of Guangzhou). 387 

As shown in Table 3, the stable classes were mapped with higher accuracy except for the stable 388 

herbaceous class which was aggregated from the grass and shrubland classes. All area estimates were 389 

significant with no margins of errors larger than 21%. Urban areas increased by 7.3 ± 0.6% of the total 390 
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study area , and the area forest loss (3.4 ± 0.6%) was slightly larger than the area of forest gain (2.4 ± 391 

0.5%), indicating that the area experienced a net loss of forest from 2000 to 2014.  392 

4.2. Consistency of data from Landsat 8 with Landsat 5 and 7  393 

While the mean differences between predicted and observed data from Landsat 5 and 7 were close to zero, 394 

the differences between predicted and actual Landsat 8 data were considerably larger (Table 4). The 395 

observed surface reflectance data from Landsat 8 are lower than the predicted values for all 6 optical 396 

bands, but the bias in the longer wavelength bands is much less than in the visible bands. The blue band 397 

surface reflectance from Landsat 8 is 0.0332 lower than the predicted values, which is quite high relative 398 

to the magnitude of blue band surface reflectance. For the VIs, the observed Landsat 8 NDVI value is 399 

0.0424 higher than the predicted values, while the observed EVI value is 0.0193 lower than the predicted 400 

values. Figure 7 illustrates the histogram of the difference between the observed and the predicted 401 

Landsat 8 values. It is apparent that all the visible bands are negatively biased in Landsat 8 images. The 402 

blue band in Landsat 8 shows the largest bias, followed by the green and red bands, while the NIR, 403 

SWIR1, and SWIR2 bands are less biased. Figure 8 illustrates the difference between predicted Landsat 8 404 

VIs and the observed Landsat 8 VIs. The observed Landsat 8 NDVI values are much higher than the 405 

predicted values, while the EVI values are less biased.  406 

We believe that the differences in the visible bands are related to the different atmospheric correction 407 

methods used. Compared to the NIR bands, the visible bands of Landsat 8 are more spectrally similar to 408 

previous sensors; however, atmospheric correction has larger impacts on the resulting surface reflectance 409 

values for the visible bands. The large positive bias in Landsat 8 NDVI values is caused by the negative 410 

bias in the red band which makes the denominator smaller and the numerator larger (see Equation 2 for 411 

details). The EVI values are less biased than the NDVI values as the biases of the blue band and the red 412 

band cancel each other during the EVI calculation. Although the numerator is larger because of lower red 413 

band surface reflectance, the denominator is also larger as the combined effects of 6 times the red band 414 
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minus 7.5 times blue band (see Equation 2 for details). Because the Landsat 8 EVI values are less biased 415 

than the NDVI values, EVI was used as the indicator of greenness. In the future, to make Landsat 8 data 416 

more consistent with data from previous Landsat sensors, using the same atmospheric correction method 417 

(including the same atmospheric composition data) for all Landsat data might help alleviate the bias we 418 

detected. Note that the current Landsat 8 surface reflectance product is only provisional, and that USGS is 419 

currently evaluating its surface reflectance correction procedures for Landsat with the hope of improving 420 

consistency across time and sensors.  421 

4.3 Changes in greenness estimated by SLT and CCDC 422 

After applying the CCDC and SLT methods for all pixels in the study area, total EVI change maps from 423 

2000 to 2014 based on Equations 5 and 7 were produced (Figure 9). The map on the left in Figure 9 is the 424 

total EVI change derived from the SLT method, and the map on the right is the total EVI change derived 425 

from CCDC. The different colors represent change in EVI values over the past 15 years, where the 426 

stronger green hues indicate larger increases in EVI, whereas the stronger red hues reflect the greater 427 

decreases in EVI. Generally the greenness change patterns between the two methods are quite similar but 428 

the SLT greenness trends show much larger change magnitudes in both directions than respective CCDC 429 

trends. Figure 10 is the scatter plot of total EVI change from the CCDC method versus the total EVI 430 

change from the SLT method. The colors indicate the density of the points within each grid. Most of the 431 

EVI changes from the two methods are positive (dark red), and the two methods are quite similar. The 432 

major difference is that for pixels with positive EVI change, the total greenness change from SLT method 433 

was higher than the CCDC method, while for pixels with negative EVI change, the total greenness change 434 

from SLT method was lower than the CCDC method. Figure 11 shows the histogram of the total EVI 435 

changes from 2000 to 2014 derived from the SLT method (red curve) and the CCDC method (green curve) 436 

based on a total of 8.14 million pixels. It is clear that both methods show a greening trend, but that the 437 

SLT greenness estimates were higher. The mean total EVI change based on the SLT method was 0.0648, 438 

with a 95% confidence interval between 0.0647 and 0.0649. The mean total EVI change based on the 439 
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CCDC method was 0.0567 and the 95% confidence interval was between 0.0566 and 0.0567. A paired t-440 

test shows that the means of the two distributions were statistically different (p < 0.01). Overall, the 441 

estimated greenness trends from the SLT method were 14.3% higher than the estimate from the CCDC 442 

method.  443 

As the CCDC algorithm can separate changes in EVI into gradual and abrupt processes, we mapped these 444 

forms of change separately from 2000 to 2014 (Figure 12). For gradual EVI change, except for some of 445 

the southeastern areas, most of Guangzhou showed large increases in EVI (green color), even for some 446 

highly developed areas. The pixels with abrupt EVI changes showed primarily negative trends, especially 447 

for the highly developed areas. It is quite interesting to note that not all land cover changes result in 448 

decreased greenness. For the northeastern mountainous areas, some of the land cover changes showed an 449 

increase EVI following abrupt changes. Figure 13 shows a histogram of the gradual and abrupt EVI 450 

changes based on the CCDC method. As expected, the abrupt changes tended to be higher in magnitude 451 

than the gradual changes.  Also, it is interesting to note that the gradual changes tended to be associated 452 

with increases in EVI (larger tail on the right), and the abrupt changes generally were associated with 453 

decreases in EVI (larger tail on the left). The gradual change histogram (green curve) was based on 454 

statistics from 8.16 million pixels, with a mean gradual EVI change of 0.0659, and a 95% confidence 455 

interval between 0.0659 and 0.0660. The abrupt change histogram (red curve) was based on all changed 456 

pixels (a total of 2.74 million pixels), with a mean abrupt EVI change of -0.0276 and, a 95% confidence 457 

interval between -0.0278 and -0.0274. Generally, the abrupt changes had a negative effect on the total 458 

greenness. However, the gradual EVI changes had greater influence on the overall results, due to the 459 

larger number of pixels and the relatively large magnitude of the mean EVI change.   460 

By averaging the gradual, abrupt, and total change for each individual year for all pixels in the study area, 461 

it was possible to provide annual estimates of the mean EVI change magnitude caused by the different 462 

change components as well as the total amount of EVI change estimated from the STL and CCDC 463 

methods (Figure 14). For the SLT method, as the slope of the linear model was a constant, the annual 464 
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estimates of the mean EVI change were a fixed value, except for 2014, during which we did not have a 465 

full year of data. It is obvious that at the scale of individual years, the magnitudes of the CCDC total 466 

change estimates were quite different from the SLT estimates, especially for the years when many abrupt 467 

changes were identified (2003, 2004, and 2013 for example). The annual mean gradual EVI changes were 468 

all positive and the magnitude increased after 2003. Conversely, the mean EVI changes for the abrupt 469 

changes were generally negative, and the magnitude was higher in 2003, 2004, 2012, and 2013. These 470 

were also the years when most of the land cover change occurred. Figure 15 shows the accumulated mean 471 

EVI change, which is similar to Figure 14, but the values are cumulative through time. Similarly, the 472 

gradual changes showed a positive trend, and the abrupt changes showed a negative trend. Although the 473 

differences were relatively small, the SLT method consistently overestimated the magnitude of total EVI 474 

change compared to the CCDC method.   475 

4.4   Impact of land cover and land cover change on greenness   476 

Using the land cover information for each pixel at any given time, we can quantify the effects of land 477 

cover and land cover change on the greenness trends (Figures 16 and 17). The red bars in Figure 16 are 478 

the average of the gradual changes for all time series models (Equation 3) for each land cover category, 479 

and the blue bars are the frequency of time series models classified into the same land cover category. 480 

Surprisingly, all land cover categories showed positive values in mean gradual EVI change, with orchard 481 

showing the largest magnitude (~0.15). The mean gradual EVI change for the categories of water and 482 

commercial/industrial were the lowest in magnitude (0.01-0.02). The small positive magnitude in the 483 

water category might be due to the increased growth of phytoplankton from eutrophication (Li et al., 484 

2006). Although the mean gradual EVI change in evergreen broadleaf forest was modest (~0.05), because 485 

of the large extent of the class, it was one of the main contributors to the overall increase of EVI in terms 486 

of gradual change. The red bars in Figure 17 are the mean abrupt change in EVI for each post-disturbance 487 

land cover category (Equation 4), and the blue bars represent the frequency of each post-disturbance land 488 

cover category. In this case, if the pixels changed to vegetated classes, such as evergreen broadleaf forest, 489 
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evergreen needleleaf forest, mixed forest, secondary forest, croplands, and wetlands, positive mean 490 

abrupt EVI changes were observed. On the other hand, if the change was to classes with less vegetation, 491 

such as barren, water, low density residential, high density residential, and commercial/industrial, 492 

negative mean abrupt changes were observed. The largest negative change magnitude was associated with 493 

areas changed to barren (~0.15). The commercial/industrial class was also one of the most important 494 

contributors, as many abrupt changes ended up in this class.  495 

The magnitude of the abrupt EVI change is straightforward to explain, as it was directly related to human 496 

activities in Guangzhou. For example, due to the recent “11th Five year” (2005-2010) and “12th Five year” 497 

(2010-2015) policies, many areas of old industrial buildings were replaced by new areas of “green space”, 498 

which had a positive greening effect from the abrupt EVI changes. On the other hand, urban expansion, 499 

such as the building of the Guangzhou Higher Education Mega Center and New Baiyun Airport, had a 500 

major negative effect on EVI. The magnitude of gradual change is more difficult to understand. Piao et al. 501 

(2015) suggested that rising atmospheric CO2 concentration and nitrogen deposition are the most likely 502 

causes of the greening trend in China, and the contribution of nitrogen deposition is more clearly seen in 503 

southern China. Factors such as the urban heat island effect (Zhou et al., 2004) and rainfall anomalies 504 

(Herrmann et al., 2005) may also influence the vegetation growth in the urban areas. Further studies are 505 

needed to better understand the major causes of the greening in Guangzhou.  506 

5. Conclusion 507 

The launch of Landsat 8 extended the continuity of Landsat data. However, the differences in radiometry, 508 

band wavelengths, and atmospheric correction methods can cause problems when combining data from 509 

previous Landsat satellites for time series analysis. The biggest differences were in the visible bands, 510 

especially the blue band. Landsat 8 NDVI values were positively biased, while Landsat 8 EVI values 511 

were less biased compared to NDVI values (slightly negatively biased). We believe the different 512 

atmospheric correction methods are the major source of the observed differences.  513 
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Land cover change is one factor that can influence the analysis of greenness, and this effect is especially 514 

significant for places like Guangzhou that exhibit high rates of change. In comparison with the SLT 515 

method, the CCDC-based method presented in this paper provides more detailed and precise estimates of 516 

greenness change in areas of land cover change. At the pixel level, the two methods may show different 517 

results (e.g. Figures 3 and 4). The two methods showed large differences in mean annual estimates of EVI 518 

change (Figure 14). The cumulative changes from 2000 to 2014 were less dramatic, but the SLT method 519 

still estimated the overall change in greenness to be 14% higher than the CCDC method. Moreover, the 520 

CCDC-based method can estimate the effects of gradual change and abrupt separately, provide greenness 521 

change for different time intervals, and associate land cover information with greenness change.     522 

Increased EVI was observed in Guangzhou from 2000 to 2014 in spite of the massive urban growth 523 

during that time period. Since Landsat 8 EVI was slightly lower than Landsat 5 and Landsat 7 EVI, the 524 

magnitude of the actual EVI increase may have been even higher than estimated. Generally, the abrupt 525 

change caused decreases in EVI, and the gradual change increased EVI. Because there were many more 526 

pixels with gradual change (8.16 million pixels) than the pixels with abrupt change (2.74 million pixels), 527 

and because the value of mean gradual EVI change (0.0659) was also larger than the value of the mean 528 

abrupt EVI change (-0.0276), it is logical that the total EVI change in Guangzhou was positive (0.0567).  529 

In conclusion, although data from Landsat 8 are not completely consistent with data from the previous 530 

Landsat 5 and 7 satellites, the EVI values are only slightly negatively biased, and therefore we believe 531 

that the EVI data can be used for vegetation greenness analysis without further modification. NDVI 532 

values appeared to be sufficiently positively biased to alter the trend results. Based on this study, we are 533 

reluctant to recommend the use of Landsat 8 NDVI data with NDVI data from Landsat 5 and 7 in 534 

greenness trend analyses. In addition, it is important to consider land cover change when evaluating 535 

trends in greenness, especially for places undergoing surface changes across large areas. For Guangzhou, 536 

not considering land cover change for assessing greenness trends can bias the results. Finally, based on all 537 

available data collected by Landsat 5, 7, and 8 from 2000 to 2014, Guangzhou has experienced a 538 
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significant greening. It will be important to perform similar trend studies for other urban areas to 539 

determine if  the trends in Guangzhou are typical or unique.   540 
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List of figure captions 773 

Figure 1. Study area. The background in Figure 1a is a shortwave-infrared, near-infrared, and green-774 

visible RGB false-color composite Landsat 8 image acquired on November 29, 2013. The red polygon is 775 

the boundary of Guangzhou city.  776 

Figure 2. Illustration of the CCDC algorithm. Landsat 5, 7, and 8 observations are designated by red, 777 

green, and blue dots, respectively. Abrupt changes are identified by black circles. Time series models are 778 

in black curves. NIR = near-infrared; SWIR1 = shortwave-infrared 1; SWIR2 = shortwave-infrared 2.  779 

Figure 3. EVI change estimated by the CCDC method. Red, green, and blue dots are EVI values for 780 

Landsat 5, 7, and 8 observations, respectively. The three segments (AB, CD, and EF) are the overall EVI 781 

values estimated by the CCDC method. EVI = Enhanced Vegetation Index; CCDC = Continuous Change 782 

Detection and Classification.  783 

Figure 4. EVI change estimated by the SLT method for the same pixel shown in Figures 2 and 3 based on 784 

all available growing season (April-October) Landsats 5, 7, and 8 observations. Red, green, and blue dots 785 

are EVI values for Landsats 5, 7, and 8 observations, respectively. The blue line is the trend estimated by 786 

the SLT method. EVI=Enhanced Vegetation Index; SLT=Simple Linear Trend. 787 

Figure 5. CCDC 2000-2014 change maps.  The map on the left shows the number of changes from 2000 788 

to 2014. The map on the right shows the year of the most recent change. 789 

Figure 6. Land cover maps for 2000 (left) and 2014 (right). 790 

Figure 7. Histogram of the differences between predicted and observed Landsat 8 six optical bands. 791 

NIR=near-infrared; SWIR1=shortwave-infrared 2; TIR=thermal infrared. 792 

Figure 8. Histogram of the differences between predicted and observed Landsat 8 VIs. 793 

NDVI=Normalized Difference Vegetation Index; EVI=Enhanced Vegetation Index. 794 



36 
 

Figure 9. Total EVI change maps derived by the SLT method (left) and the CCDC method (right) from 795 

2000 to 2014. The colors represent the magnitude of EVI changes. The stronger in red hue, the more 796 

decreases in EVI, and the stronger in green hue, the more increases in EVI. EVI=Enhanced Vegetation 797 

Index; SLT=Simple Linear Trend; CCDC=Continuous Change Detection and Classification. 798 

Figure 10. Scatter plot of CCDC total EVI change versus SLT total EVI change from 2000 to 2014. 799 

EVI=Enhanced Vegetation Index; SLT=Simple Linear Trend; CCDC=Continuous Change Detection and 800 

Classification. The colors indicate the density of the points within each grid.  801 

Figure 11. Histogram of CCDC total EVI change versus SLT total EVI change from 2000 to 2014. 802 

EVI=Enhanced Vegetation Index; SLT=Simple Linear Trend; CCDC=Continuous Change Detection and 803 

Classification.   804 

Figure 12. Gradual (left) and abrupt (right) EVI change maps from 2000 to 2014 derived by the CCDC 805 

method. The colors represent the magnitude of EVI changes. The stronger the red hue, the more the 806 

decreases in EVI, and the stronger the green hue, the more the increases in EVI. EVI=Enhanced 807 

Vegetation Index; CCDC=Continuous Change Detection and Classification.   808 

Figure 13. Histogram of CCDC gradual and abrupt EVI changes occurring from 2000 to 2014. 809 

CCDC=Continuous Change Detection and Classification; EVI=Enhanced Vegetation Index.   810 

Figure 14. Annual mean EVI change from the CCDC and SLT methods. For the CCDC method, three 811 

annual amounts are provided: CCDC gradual, abrupt, and total change. For the SLT method, only the 812 

annual SLT total change can be calculated. EVI=Enhanced Vegetation Index; CCDC=Continuous Change 813 

Detection and Classification; SLT=Simple Linear Trend.     814 

Figure 15. Accumulated mean EVI change derived from CCDC and SLT methods. For the CCDC method, 815 

three accumulated statistical numbers were provided: gradual, abrupt, and total change. For the SLT 816 
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method, only the accumulated SLT total change can be calculated. EVI=Enhanced Vegetation Index; 817 

CCDC=Continuous Change Detection and Classification; SLT=Simple Linear Trend.   818 

Figure 16. Magnitude of mean gradual changes for all time series models for different land cover 819 

categories (red bars) and the frequency of time series models classified into the same land cover category 820 

(blue bars).EBF=Evergreen Broadleaf Forest; ENF=Evergreen Needleleaf Forest; MF=Mixed Forest; 821 

SF=Secondary Forest; S=Shrubland; G=Grassland; O=Orchard; C=Croplands; WL=Wetland; B=Barren; 822 

W=Water; LDR=Low Density Residential; HDR=High Density Residential; CI=Commercial/Industry. 823 

Figure 17. Magnitude of mean abrupt changes for the land cover categories to which they have changed to 824 

(red bars), and the frequency of the land cover categories to which they changed (blue bars). 825 

EBF=Evergreen Broadleaf Forest; ENF=Evergreen Needleleaf Forest; MF=Mixed Forest; SF=Secondary 826 

Forest; S=Shrubland; G=Grassland; O=Orchard; C=Croplands; WL=Wetland; B=Barren; W=Water; 827 

LDR=Low Density Residential; HDR=High Density Residential; CI=Commercial/Industry.  828 
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Tables 829 

Table 1. Comparison of Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) bands with Landsat 7 830 
Enhanced Thematic Mapper Plus (ETM +) and Landsat 5 Thematic Mapper (TM) bands (the bands in bold letters are the bands 831 
used in this study). 832 

Landsat 8 (OLI & TIRS) 
 

Landsat 7 (ETM+) 
 

Landsat 5 (TM)  
Band description Wavelength (μm) Band description  Wavelength (μm) Band description  Wavelength (μm) 
Band 1 — Ultra blue 0.43–0.45 

  
  

Band 2 — Blue 0.45–0.51 Band 1 — Blue 0.45–0.52 Band 1 — Blue 0.45–0.52 
Band 3 — Green 0.53–0.59 Band 2 — Green 0.52–0.60 Band 2 — Green 0.52–0.60 
Band 4 — Red 0.64–0.67 Band 3 — Red 0.63–0.69 Band 3 — Red 0.63–0.69 
Band 5 — NIR 0.85–0.88 Band 4 — NIR 0.77–0.90 Band 4 — NIR 0.76–0.90 
Band 6 — SWIR1 1.57–1.65 Band 5 — SWIR1 1.55–1.75 Band 5 — SWIR1 1.55–1.75 
Band 7 — SWIR2 2.11–2.29 Band 7 — SWIR2 2.09–2.35 Band 7 — SWIR2 2.08–2.35 
Band 8 — Pan 0.50–0.68 Band 8 — Pan 0.52–0.90   
Band 9 — Cirrus 1.36–1.38 

  
  

Band 10 — TIR 10.60–11.19 Band 61 — TIR 10.40–12.50 (high gain) Band 6 — TIR 10.40–12.50  
Band 11 — TIR 11.50–12.51 Band 62 — TIR 10.40–12.50 (low gain)   

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

  841 
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Table 2. 14-categories land cover description. 842 

Classes Number  of Pixels Description 
Evergreen Needleleaf Forest 
(ENF) 

241 Forested land > 80% coniferous evergreen canopy cover 

Evergreen Broadleaf Forest 
(EBF) 

438 Forested land > 80% broadleaved evergreen canopy cover 

Mixed Forest (MF) 188 Mosaic of multiple forest species, with no single canopy greater than 60% 
Secondary Forest (SF) 280 Plantation forested land > 80% after forest harvest, with unique species 
Croplands (C)                  563 Managed plantation of crop followed by harvest paddy and bared soil  
Orchard (O) 284 Managed plantation of fruit trees, primarily litchi and banana 
Shrubland (S) 175 Woody vegetation cover less than 2 meters tall and > 50% shrub species 
Grassland (G) 417 Grassland dominated open space with < 10% tree and shrub cover 
Wetland (WL) 201 Vegetated lands with a high water table 
Water (W) 600 Standing water present >11 months, oceans, lakes, rivers, and water pond 
Barren (B) 367 Bare land sparsely vegetated, > 60% soil background 
Low Density Residential (LDR) 403 Residential land with equal parts impervious surface & vegetation 
High Density Residential (HDR) 376 Residential land minimally vegetated, > 60% impervious surface 
Commercial/Industry (CI) 537 Impervious surface and man-made building > 80%  

 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 
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Table 3. Accuracy assessment and area estimate for CCDC land cover and land cover change maps from 2000 to 2014. 855 

Accuracy measures            

 Forest Urban Agriculture Herb Water Forest 
management 

Forest 
loss 

Forest 
gain 

Herbaceous 
gain 

Agriculture 
gain 

Water 
gain 

Urban 
gain 

Prod. acc. 90.31% 92.92% 87.39% 60.07% 97.85% 87.53% 85.19% 67.88% 78.30% 80.06% 82.76% 82.25% 
User acc. 91.97% 88.32% 92.00% 61.62% 93.33% 74.67% 87.76% 75.51% 73.33% 68.00% 70.00% 97.30% 

Overall acc 87.05%            
             

Stratified estimators of area ± CI [% of total map area]         

 Forest Urban Agriculture Herb Water Forest 
management 

Forest 
loss 

Forest 
gain 

Herbaceous 
gain 

Agriculture 
gain 

Water 
gain 

Urban 
gain 

Area 22.34% 17.08% 19.61% 5.92% 10.63% 4.31% 3.40% 2.39% 3.62% 2.06% 1.37% 7.30% 
95% CI 1.09% 1.00% 1.06% 1.03% 0.69% 0.64% 0.49% 0.50% 0.59% 0.44% 0.38% 0.61% 

 856 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 
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Table 4. Mean differences between observed and predicted Landsats 5-7 and Landsat 8 optical bands and VIs.  869 

Spectral bands or VIs Blue Green Red NIR SWIR1 SWIR2 NDVI EVI 
Mean difference for Landsats 5-7 0.0012 0.0011 0.0010 -0.0003 -0.0010 -0.0013 -0.0046 0.0010 
Mean difference for Landsat 8  -0.0332 -0.0203 -0.0147 -0.0025 -0.0015 -0.0015 0.0424 -0.0193 
  870 
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Figures 871 

 872 

Figure 1. Study area. The background in Figure 1a is a shortwave-infrared, near-infrared, and green-visible RGB false-color 873 

composite Landsat 8 image acquired on November 29, 2013. The red polygon is the boundary of Guangzhou city.  874 

 875 
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 876 

Figure 2. Illustration of the CCDC algorithm. Landsat 5, 7, and 8 observations are designated by red, green, and blue dots, 877 

respectively. Abrupt changes are identified by black circles. Time series models are in black curves. NIR = near-infrared; SWIR1 878 

= shortwave-infrared 1; SWIR2 = shortwave-infrared 2.  879 
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 880 

Figure 3. EVI change estimated by the CCDC method. Red, green, and blue dots are EVI values for Landsat 5, 7, and 8 881 

observations, respectively. The three segments (AB, CD, and EF) are the overall EVI values estimated by the CCDC method. 882 

EVI = Enhanced Vegetation Index; CCDC = Continuous Change Detection and Classification.  883 

 884 

 885 

Figure 4. EVI change estimated by the SLT method for the same pixel shown in Figures 2 and 3 based on all available growing 886 

season (April-October) Landsats 5, 7, and 8 observations. Red, green, and blue dots are EVI values for Landsats 5, 7, and 8 887 

observations, respectively. The blue line is the trend estimated by the SLT method. EVI=Enhanced Vegetation Index; 888 

SLT=Simple Linear Trend. 889 
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890 
Figure 5. CCDC 2000-2014 change maps.  The map on the left shows the number of changes from 2000 to 2014. The map on the 891 

right shows the year of the most recent change.  892 
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893 
Figure 6. Land cover maps for 2000 (left) and 2014 (right). 894 

 895 



47 
 

 896 

Figure 7. Histogram of the differences between predicted and observed Landsat 8 six optical bands. NIR=near-infrared; 897 

SWIR1=shortwave-infrared 2; TIR=thermal infrared. 898 

 899 

 900 
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 901 

Figure 8. Histogram of the differences between predicted and observed Landsat 8 VIs. NDVI=Normalized Difference Vegetation 902 

Index; EVI=Enhanced Vegetation Index. 903 
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904 
Figure 9. Total EVI change maps derived by the SLT method (left) and the CCDC method (right) from 2000 to 2014. The colors 905 

represent the magnitude of EVI changes. The stronger in red hue, the more decreases in EVI, and the stronger in green hue, the 906 

more increases in EVI. EVI=Enhanced Vegetation Index; SLT=Simple Linear Trend; CCDC=Continuous Change Detection and 907 

Classification. 908 

 909 
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910 
Figure 10. Scatter plot of CCDC total EVI change versus SLT total EVI change from 2000 to 2014. EVI=Enhanced Vegetation 911 

Index; SLT=Simple Linear Trend; CCDC=Continuous Change Detection and Classification. The colors indicate the density of 912 

the points within each grid.  913 

 914 

Figure 11. Histogram of CCDC total EVI change versus SLT total EVI change from 2000 to 2014. EVI=Enhanced Vegetation 915 

Index; SLT=Simple Linear Trend; CCDC=Continuous Change Detection and Classification.   916 
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917 
Figure 12. Gradual (left) and abrupt (right) EVI change maps from 2000 to 2014 derived by the CCDC method. The colors 918 

represent the magnitude of EVI changes. The stronger the red hue, the more the decreases in EVI, and the stronger the green hue, 919 

the more the increases in EVI. EVI=Enhanced Vegetation Index; CCDC=Continuous Change Detection and Classification.   920 

 921 

 922 
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 923 

Figure 13. Histogram of CCDC gradual and abrupt EVI changes occurring from 2000 to 2014. CCDC=Continuous Change 924 

Detection and Classification; EVI=Enhanced Vegetation Index.   925 

 926 

 927 

 928 

 929 
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 930 

Figure 14. Annual mean EVI change from the CCDC and SLT methods. For the CCDC method, three annual amounts are 931 

provided: CCDC gradual, abrupt, and total change. For the SLT method, only the annual SLT total change can be calculated. 932 

EVI=Enhanced Vegetation Index; CCDC=Continuous Change Detection and Classification; SLT=Simple Linear Trend.     933 

 934 
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 935 

Figure 15. Accumulated mean EVI change derived from CCDC and SLT methods. For the CCDC method, three accumulated 936 

statistical numbers were provided: gradual, abrupt, and total change. For the SLT method, only the accumulated SLT total change 937 

can be calculated. EVI=Enhanced Vegetation Index; CCDC=Continuous Change Detection and Classification; SLT=Simple 938 

Linear Trend.   939 
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 940 

Figure 16. Magnitude of mean gradual changes for all time series models for different land cover categories (red bars) and the 941 

frequency of time series models classified into the same land cover category (blue bars).EBF=Evergreen Broadleaf Forest; 942 

ENF=Evergreen Needleleaf Forest; MF=Mixed Forest; SF=Secondary Forest; S=Shrubland; G=Grassland; O=Orchard; 943 

C=Croplands; WL=Wetland; B=Barren; W=Water; LDR=Low Density Residential; HDR=High Density Residential; 944 

CI=Commercial/Industry. 945 
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 946 

Figure 17. Magnitude of mean abrupt changes for the land cover categories to which they have changed to (red bars), and the 947 

frequency of the land cover categories to which they changed (blue bars). EBF=Evergreen Broadleaf Forest; ENF=Evergreen 948 

Needleleaf Forest; MF=Mixed Forest; SF=Secondary Forest; S=Shrubland; G=Grassland; O=Orchard; C=Croplands; 949 

WL=Wetland; B=Barren; W=Water; LDR=Low Density Residential; HDR=High Density Residential; CI=Commercial/Industry. 950 
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